CS443: Compiler
Construction

Lecture 9: FP and Closures

Stefan Muller
Based on material from Steve Zdancewic

Functional languages have first-class and
nested functions

* Languages like ML, Haskell, Scheme, Python, C#, Java, Swift
* Functions can be passed as arguments (e.g., map or fold)
* Functions can be returned as values (e.g., compose)
* Functions nest: inner function can refer to variables bound in the outer function

let add = fun x -> fun'y -> x + vy
let inc = add 1
let dec = add -1

let compose = fun f -> fun g -> fun x -> £ (g X)
let id = compose inc dec

 How do we implement such functions?
* inan interpreter? in a compiled language?

Let’s take a (very) small subset of OCaml

ex=funx->e|ee| x| (e)

Operational semantics of the lambda calculus
IS by substitution

» e{v/x} : substitute v for all free instances of x in e

* We say that the variablexis freeinfun y » x + vy
* Free variables are defined in an outer scope

* We say that the variabley is bound by “fun y” and its scope is the body “x +
y” in the expression fun y » x + y

* Alternatively: free = not bound

e A term with no free variables is called c/osed.
* A term with one or more free variables is called open.

Free Variables, formally

fv(x)
fv(fun x = exp)
fv(exp, exp,)

{x}
fv(exp) \ {x} (" is a bound in exp)
fv(exp,) U fv(exp,)

CS 443 - Fall 2022 - Lecture 9

Substitution Definition + Examples

x{v/x} =V (replace the free x by v)

v{v/x} =y (assuming y # x)

(fun x = exp){v/x} = (fun x —> exp) (x is bound in exp)

(funy = exp){v/x} = (funy = exp{v/x}) (assumingy # x)

(e, e, {v/x} = (e, {v/x} e, {v/x}) (substitute everywhere)
* Examples:

(xy) {(funz > z2z)/y} = x(funz > z2)
(funx > xy){(funz > z2z)/y} = funx 2> x (funz > z 2)

(funx 2> x){(funz—>2z2z)/x} = funx—>x //xisnot free!

CS 443 - Fall 2022 - Lecture 9

This definition enables partial application

let add = fun x -> funy -> X + vy
let addl = add 1 = (funy -> x + y){1/x}
=funy -> 1+ vy

Result is a function!

It we naively substitute an open term,
variables can be captured

Note: xis free

(fun x = (x y){(fun z = x)/y} in (funz = x)
= fun x = (x (fun z ->x))

free x is

* Alpha equivalence to the rescue: names of bound vars don’t matter!
funx->(xy) = funa->(ay)

(fun a = (ay)){(fun z - x)/vy}
= funa - (a(funz->x))

Alpha equivalence: real lite application!

let rec gsort 1
let (a, b) =
let asorted =
let bsorted =
merge asorted

split 1 in

gsort a in
gsort b in
bsorted

let rec gsort 1 =
let (alist, blist)

split 1 in

let a _sort = gsort a list in

let b_sort = gsort b_list in

merge a_sort b sort

Substitution with open terms

x{e/x} = e (replace the free x by v)
v{e/x} =y (assuming y # x)

(fun x < e){e,/x} =(funx > e,) (x is bound in exp)

(funy = e e, /x} =(funy > e, {e, /x}) (assuming y # x, y &fv(e,))
(e, e,{e/x} = (e,{e/x} e,{e/x}) (substitute everywhere)

Or just alpha convert everywhere right
at the beginning so all the var names
are different If it is?

Alpha convert!

CS 443 - Fall 2022 - Lecture 9 10

Example

(fun x = (x y)){(fun z = x)/vy}
= (fun x’ = (x' (fun z = x))

Nobody implements interpreters for
functional PLs using substitution

e Why?

e Slow

More efficient implementation: first try

ar
let add = fun (X, y) -> X + y i

let three add 1 2

CS 443 - Fall 2022 - Lecture 9 13

More efficient implementation: first try

Var
let add = fun (X; Y) -> X + y add fun(x,y) >x+y

let three add 1 2

CS 443 - Fall 2022 - Lecture 9 14

More efficient implementation: first try

o
let add = fun (X, y) -> X + y dd (X —
let three = add 1 2 X 1

Yy 2

CS 443 - Fall 2022 - Lecture 9 15

More efficient implementation: first try

o
let add = fun (X, y) -> X + y - (X —
let three = add 1 2 three 3

CS 443 - Fall 2022 - Lecture 9 16

More efficient implementation: first try

let add = fun x -> fun y -> X + y add funx->funy->x+y

let addl = add 1
let three addl 2

CS 443 - Fall 2022 - Lecture 9 17

More efficient implementation: first try

let add = fun x -> fun y -> X + y add funx->funy->x+y

let addl = add 1 X 1
let three addl 2

CS 443 - Fall 2022 - Lecture 9 18

More efficient implementation: first try

Var
let add — 'Fun X '> 'Fun y _> X + y add funx->funy->x+y

let addl = add 1 addl funy->x+y
let three addl 2

CS 443 - Fall 2022 - Lecture 9 19

More efficient implementation: first try

let x =1 1in . il
let f vy =x+ vy in
let x = 2 1n

2

CS 443 - Fall 2022 - Lecture 9 20

More efficient implementation: first try

let x =1 1in : Z'
let f vy =x+ vy in
let x = 2 1n

2

CS 443 - Fall 2022 - Lecture 9 21

More efficient implementation: first try

. r [value
let x = 1 1n a alue
let f y =X +YVY in f funy->x+vy
let x = 2 1n

2

CS 443 - Fall 2022 - Lecture 9 22

More efficient implementation: first try

. r [value
let x = 1 1n a alue
let f y =X +YVY in f funy->x+vy
let x = 2 1n

2

CS 443 - Fall 2022 - Lecture 9 23

More efficient implementation: first try

let x = 1 in -
let + y=x+Y 1n f funy->x+y

let x = 2 1in y 2

f 2

x should still be 1 in f!

CS 443 - Fall 2022 - Lecture 9 24

Second try: use closures

* Closure: function code + environment

* This will be the value of a function

With closures

let x = 1 in . =
let f y=x+y in
let x = 2 1in

2

CS 443 - Fall 2022 - Lecture 9 26

With closures

let x = 1 in : Z'
let f y=x+y in
let x = 2 1in

2

CS 443 - Fall 2022 - Lecture 9 27

With closures
et % = 1 in

=1
X 1
let f y=x+y in f (Funy ->x +y,
: Var __|Value |
let x = 2 1n 1
f 2 ’

CS 443 - Fall 2022 - Lecture 9 28

With closures
et % = 1 in

=1
X 2
let f y=x+y in f (Funy ->x +y,
: Var __|Value |
let x = 2 1n 1
f 2 ’

CS 443 - Fall 2022 - Lecture 9 29

With closures

. r |vale |
let x =1 1in a alue
let f y=x+y in f (Funy ->x +y,
: Var |Value
let x = 2 1in »)
f 2
y 2

Call the function with the

environment from the closure
(+ arguments)

CS 443 - Fall 2022 - Lecture 9 30

Next time

e Suggests how to compile: closure now doesn’t depend on
environment
e Add code to build closures (closure conversion)
* Lift code parts of closures into top-level functions (hoisting/lambda lifting)

