
CS443: Compiler
Construction

Lecture 0

CS 443 - Fall 2024 - Lecture 0 1

square(int):
addi sp,sp,-32
sw ra,28(sp)
sw s0,24(sp)
addi s0,sp,32
sw a0,-20(s0)
lw a5,-20(s0)
mul a5,a5,a5
mv a0,a5
lw ra,28(sp)
lw s0,24(sp)
addi sp,sp,32
jr ra

What happens when you call gcc?

foo.c

Compiler

foo.s

Assembler

foo.olib1.olib2.o… Linker foo

This class

CS 443 - Fall 2024 - Lecture 0 2

int square(int num) {
return num * num;

}

4f3cf28a6b72…

(Code examples courtesy godbolt.org)

There are different ways of translating a
programming language

CS 443 - Fall 2024 - Lecture 0 3

Compiler

Source Code

Binary/Assembly

Interpreter

Source Code

Compiler

Source Code

Bytecode

VM

Ex.: C, C++
Ex.: Python Ex.: Java

Compilers translate code in phases

CS 443 - Fall 2024 - Lecture 0 4

Source
Code

Lexical
Analyzer Tokens Parser

Abstract
Syntax

Lowering
Intermed.

Rep.
Code
Gen.

Target
Code

Analysis Optimization

a = b + c - 1 VAR a
EQUAL
VAR b
OP +
VAR C
OP -
CONST 1

Assign

a +

b -

c 1

temp = c – 1
a = b + temp

subl %rax, 1
addl %rax, %rbx

“Front End” “Back End”

May have many more phases, several
intermediate representations

CS 443 - Fall 2024 - Lecture 0 5

Front End is language specific
Back End is machine specific

CS 443 - Fall 2024 - Lecture 0 6

Source
Code

Lexical
Analyzer Tokens Parser

Abstract
Syntax

Lowering
Intermed.

Rep.
Code
Gen.

Target
Code

Analysis Optimization

a = b + c - 1 VAR a
EQUAL
VAR b
OP +
VAR C
OP -
CONST 1

Assign

a +

b -

c 1

temp = c – 1
a = b + temp

subl %rax, 1
addl %rax, %rbx

“Front End” “Back End”“Middle End”

Can (and usually do) swap out back ends to
target different machines

CS 443 - Fall 2024 - Lecture 0 7

Intermediate
Representation

Machine-Independent Optimizations

x86

ARM

PowerPC

…

Compiler collections also swap out front ends
for different languages

CS 443 - Fall 2024 - Lecture 0 8

Intermediate
Representation

Machine-Independent Optimizations

x86

ARM

PowerPC

…

C

C++

Java

…

A Small ML Compiler

Source
Code

M
in

iC
am

l
A

ST

M
in

i-
C

LL
V

M

R
is

c-
V

Optimization

LL
V

M

Lexing/Parsing Closure Conv./Lifting IR Generation Register Allocation Instruction Selection

Higher-order
Typed
Structured Data
Nested Expressions
Unlimited Variables

First-order
Typed
Structured Data
Nested Expressions
Unlimited Variables

First-order
Typed
Structured Data
Flat Expressions
Unlimited Variables

First-order
Untyped
No Structured Data
Flat Expressions
32 Hardware Registers

CS 443 - Fall 2024 - Lecture 0 9

Course Projects

Source
Code

M
in

iC
am

l
A

ST

M
in

i-
C

LL
V

M

R
is

c-
V

Optimization

LL
V

M

Lexing/Parsing Closure Conv./Lifting IR Generation Register Allocation Instruction Selection

(Project 4) (Project 3) (Project 6)

(Project 5)

Project 1

Project 2

First-order
Typed
No Structured Data
Nested Expressions
Unlimited Variables

CS 443 - Fall 2024 - Lecture 0 10

Projects

• ~7 projects, 2-3 weeks each (Except Project 0, Due 8/29)

• Mostly (entirely?) programming – graded with automated tests

• Work individually or in pairs

• Handed out + submitted via GitHub

Late Days:

• 6 per student, extend deadline 24 hours

• No more than 2 per assignment

• If a pair, must both use a late day*

CS 443 - Fall 2024 - Lecture 0 11

Fair warning: lots of programming!

CS 443 - Fall 2024 - Lecture 0 12

More bad news (for most of you)

• Projects will be in OCaml
• Good news: If you know Haskell or Racket, can learn it quickly.

• Haskell w/o monads

• Racket w/ types and way fewer parens

• Tutorial on Thursday
• Try to set it up on your machine by then if you want to follow along

CS 443 - Fall 2024 - Lecture 0 13

Background

• Prerequisite: CS440 (Programming Languages and Translators)
• Abstract syntax, working with ASTs (will review very briefly today)

• Building an interpreter (will review on Project 0)

• Functional programming

• If you’re not familiar with the above, I suggest brushing up in the next couple
weeks.

CS 443 - Fall 2024 - Lecture 0 14

Websites to know

• Course website: http://cs.iit.edu/~smuller/cs443-f24/
• Full syllabus/policies/schedule/lecture notes. Go there.

• Canvas

• Github Classroom (links will be handed out with projects)

• Discord

CS 443 - Fall 2024 - Lecture 0 15

http://cs.iit.edu/~smuller/cs443-f24/

Exams

• Midterm (Oct. 15)

• Final Exam (during finals week, schedule posted by Registrar)

• Open book, open notes

CS 443 - Fall 2024 - Lecture 0 16

Grading

• 50% Projects

• 20% Midterm

• 30% Final

CS 443 - Fall 2024 - Lecture 0 17

Textbook
• Appel. Modern Compiler Implementation in ML

(Highly recommended)
(Also have C, Java versions)

• OCaml Programming: Correct + Efficient +
Beautiful
(Free online, link on course website)

CS 443 - Fall 2024 - Lecture 0 18

Academic Honesty

• Submitted solutions must be your own work (and your partner)

• Can discuss course concepts with other students, but don’t
share/look at code.

• If using online resources/code (incl. generative AI):
• Don’t search for code that substantially solves the assigned problem.

Be reasonable.

• If using small snippets of code, cite them (e.g., URL in a comment)

CS 443 - Fall 2024 - Lecture 0 19

Office Hours

• Wednesday, 10:30-11:30am (Zoom)

• Thursday, 2-3pm (SB 218E)

CS 443 - Fall 2024 - Lecture 0 20

OK, back to programming languages

First-order
Typed
No Structured Data
Nested Expressions
Unlimited Variables
Simple
Easy to compile

IITRAN

CS 443 - Fall 2024 - Lecture 0 21

IITRAN/7040 – 1964
IITRAN/360 - 1966

IITRAN

CS 443 - Fall 2024 - Lecture 0 22

Robert Dewar

Charles Bauer

IITRAN/360

CS 443 - Fall 2024 - Lecture 0 23

Abstract Syntax

• BNF (Backus-Naur Form)

type ::= INTEGER | CHARACTER | LOGICAL

bop ::= + | - | * | / | <- uop ::= ~ | NOT | INT | CH | LG

exp ::= x | num | char | exp bop exp | uop exp

stmt ::= STOP | IF exp THEN stmt (ELSE stmt) | WHILE exp stmt

 | DO stmtlist | type varlist

varlist ::= x | x varlist

stmtlist ::= stmt | stmt stmtlist

Type casts

Not actually BNF, but you know what we mean

CS 443 - Fall 2024 - Lecture 0 24

Abstract Syntax Trees (ASTs)

CS 443 - Fall 2024 - Lecture 0 25

IF

<

+

DO
…

ELSE
…

IF X + 2 < 5 DO … ELSE …

X 2

5

Abstract Syntax is not Concrete Syntax

CS 443 - Fall 2024 - Lecture 0 29

IF

+

X

DO
…

ELSE
…

IF X + 2 < 5 DO … ELSE …

2

<

5

	Slide 1: CS443: Compiler Construction
	Slide 2: What happens when you call gcc?
	Slide 3: There are different ways of translating a programming language
	Slide 4: Compilers translate code in phases
	Slide 5: May have many more phases, several intermediate representations
	Slide 6: Front End is language specific Back End is machine specific
	Slide 7: Can (and usually do) swap out back ends to target different machines
	Slide 8: Compiler collections also swap out front ends for different languages
	Slide 9: A Small ML Compiler
	Slide 10: Course Projects
	Slide 11: Projects
	Slide 12: Fair warning: lots of programming!
	Slide 13: More bad news (for most of you)
	Slide 14: Background
	Slide 15: Websites to know
	Slide 16: Exams
	Slide 17: Grading
	Slide 18: Textbook
	Slide 19: Academic Honesty
	Slide 20: Office Hours
	Slide 21: OK, back to programming languages
	Slide 22: IITRAN
	Slide 23: IITRAN/360
	Slide 24: Abstract Syntax
	Slide 25: Abstract Syntax Trees (ASTs)
	Slide 29: Abstract Syntax is not Concrete Syntax

