CS443: Compiler
Construction

Lecture 10: FP and Closures

Stefan Muller
Based on material from Steve Zdancewic

Functional languages have first-class and
nested functions

e Languages like ML, Haskell, Scheme, Python, C#, Java, Swift
* Functions can be passed as arguments (e.g., map or fold)
* Functions can be returned as values (e.g., compose)
* Functions nest: inner function can refer to variables bound in the outer function

let add = fun x -> funy -> X + vy
let inc = add 1
let dec = add -1

let compose = fun f -> fun g -> fun x -> £ (g X)
let id = compose inc dec

 How do we implement such functions?
* inan interpreter? in a compiled language?

Let’s take a (very) small subset of OCaml|

ex=funx->e|ee|x

Operational semantics of the lambda calculus
IS by substitution

» e{v/x} : substitute v for all free instances of x in e

* We say that the variable xis freeinfun y » x + vy
* Free variables are defined in an outer scope

* We say that the variable y is bound by “fun y” and its scope is the body “x +
y” in the expression fun y » x + y

* Alternatively: free = not bound

e A term with no free variables is called c/osed.
* A term with one or more free variables is called open.

Free Variables, formally

fv(x)
fv(fun x - exp)
fv(exp, exp,)

{x}
fv(exp) \ {x} (" is a bound in exp)
fv(exp,) U fv(exp,)

CS 443 - Fall 2024 - Lecture 10

Substitution Definition + Examples

x{v/x} =V (replace the free x by v)

v{v/x} =y (assuming y # x)

(fun x = exp){v/x} = (fun x = exp) (x is bound in exp)

(funy = exp{v/x} = (funy > exp{v/x}) (assumingy # x)

(e, e,){v/x} = (e, {v/x} e,{v/x}) (substitute everywhere)
* Examples:

(xy) {(funz > z2z)/y} = x(funz > z2)
(funx > xy){(funz > z2z)/y} = funx > x(funz > zz)

(funx 2> x){(funz—>2z2z)/x} = funx—>x //xisnot free!

CS 443 - Fall 2024 - Lecture 10

This definition enables partial application

let add = fun x -> funy -> X + vy
let addl = add 1 = (funy -> x + y){1/x}
=funy ->1+y

Result is a function!

Nobody implements interpreters for
functional PLs using substitution

e Why?

e Slow

More efficient implementation: first try

ar
let add = fun (X, y) -> X + y i

let three add 1 2

CS 443 - Fall 2024 - Lecture 10 13

More efficient implementation: first try

Var
let add = fun (X, Y) -> X + y add fun(x,y) >x+y

let three add 1 2

CS 443 - Fall 2024 - Lecture 10 14

More efficient implementation: first try

ar
let add = fun (X, y) -> X + y dd (X —
let three = add 1 2 X 1

Yy 2

CS 443 - Fall 2024 - Lecture 10 15

More efficient implementation: first try

ar
let add = fun (x, y) -> x +y o
let three = add 1 2 three 3

CS 443 - Fall 2024 - Lecture 10 16

More efficient implementation: first try

let add = fun x -> fun y -> X + y add funx->funy->x+y

let addl = add 1
let three addl 2

CS 443 - Fall 2024 - Lecture 10 17

More efficient implementation: first try

let add = fun x -> fun y -> X + y add funx->funy->x+y

let addl = add 1 X 1
let three addl 2

CS 443 - Fall 2024 - Lecture 10 18

More efficient implementation: first try

Var
let add — 'Fun X '> 'Fun y _> X + y add funx->funy->x+y

let addl = add 1 add1 funy ->x+y
let three addl 2

CS 443 - Fall 2024 - Lecture 10 19

More efficient implementation: first try

let x =1 1in . il
let f y=x+y in
let x = 2 1in

f 2

CS 443 - Fall 2024 - Lecture 10 20

More efficient implementation: first try

let x =1 1in : Z'
let f y=x+y in
let x = 2 1in

f 2

CS 443 - Fall 2024 - Lecture 10 21

More efficient implementation: first try

. r |value |
let x = 1 1n a alue
let f Yy =X +Y in f funy->x+y
let x = 2 1n

f 2

CS 443 - Fall 2024 - Lecture 10 22

More efficient implementation: first try

. r |value |
let x = 1 1n a alue
let f Yy =X +Y in f funy->x+y
let x = 2 1n

f 2

CS 443 - Fall 2024 - Lecture 10 23

More efficient implementation: first try

let x = 1 in -
let +y=Xx+yin f T

let x = 2 in y 2

f 2

x should still be 1 in f!

CS 443 - Fall 2024 - Lecture 10 24

Second try: use closures

* Closure: function code + environment

* This will be the value of a function

With closures

let x = 1 1n . =
let f y=x+y in
let x = 2 1in

f 2

CS 443 - Fall 2024 - Lecture 10 26

With closures

let x = 1 1n : Z'
let f y=x+y in
let x = 2 1in

f 2

CS 443 - Fall 2024 - Lecture 10 27

With closures
1n

let x =1 » 3
let f y=x+y in f (funy->x+y,
: Var _ [Value
let x = 2 in T
f 2 ’

CS 443 - Fall 2024 - Lecture 10 28

With closures
1n

let x =1 » ,
let f y=x+y in f (funy->x+y,
: Var _ [Value
let x = 2 in T
f 2 ’

CS 443 - Fall 2024 - Lecture 10 29

With closures

. r [vawe
let x =1 1in a alue
let f y =x+y in f (funy ->x +v,
: Var |Value
let x = 2 1in »]
f 2
y 2

Call the function with the

environment from the closure
(+ arguments)

CS 443 - Fall 2024 - Lecture 10 30

e Suggests how to compile: closure now doesn’t depend on
environment
e Add code to build closures (closure conversion)
* Lift code parts of closures into top-level functions (hoisting/lambda lifting)

Add the environment as an extra parameter
to functions

fun (y: int) : int -> x + vy

\ 4

Environment now
includes y also.

int _ fun (int y, env env) {
env = _ extend env(env, “y”, y);
return _ lookup(env, “x”) + y;

} Environment loses
y when y goes out

of scope

CS 443 - Fall 2024 - Lecture 11

32

Can also just look vy up in the environment

fun (y: int) : int -> x + vy

\ 4

Pro: uniform

treatment of vars
Con: Less efficient

int _ fun (int y, env env) {
env = __ extend _env(env, “y”, y);
return _ lookup(env, “x”) + _ lookup(env, “y”);

}

CS 443 - Fall 2024 - Lecture 11 33

We need to make sure the environment keeps

up with ML variable scope

let x = (let x =1 in x + Xx) + 1 1in I

int x 1 =1

env = _extend env(env, “x”, x 1);
int temp 1 = x 1 + x 1;

env = __pop_env(env);

int x 2 = temp 1 + 1;

env = __extend env(env, “x”, x 2);

env = _ _pop_env(env);

CS 443 - Fall 2024 - Lecture 11

34

As suggested by “extend” and “pop”
environment follows a stack

let x =1 in x + (lety =2 in X + y) + X

int x 1 = 1;

env = _ extend env(env, “x”, x 1);
int y 1 = 2;

env = _extend env(env, “y”, y 1);
temp 1 = x 1 +vy 1;

env = __ pop _env(env);

temp 2 = x 1 + temp 1 + x 1
env = _ _pop_env(env);

e

A closure is a pair of the function code and

the current environment

let x = 1 1in
let inc = fun y -> x + y 1in
inc 2

int x 1 = 1;

env = _extend env(env, “x”, x 1);

closure inc 1 = mk clos(“funy -> x + y”
env = _ extend _env(env, “inc”, inc 1);

int temp_1 = _ call closure(inc_1, 2);

, env);

(But the function code needs to be lifted to

the top level)

int incl_body(int y, env env) {
env = __ extend _env(env, “y”, y);
return _ lookup(env, “x”) + y;

}

int x 1 = 1;

env = _extend env(env, “x”, x 1);
closure inc_ 1 = mk clos(incl_body
env = _ extend _env(env, “inc”, inc 1);
int temp 1 = call closure(inc_ 1, 2);

, env);

Call a closure by calling the function with the
closure’s environment (NOT the current one)

int incl_body(int y, env env) {
env = __ extend _env(env, “y”, y);
return _ lookup(env, “x”) + y;

}

int x 1 = 1;

env = _extend env(env, “x”, x 1);

closure inc 1 = mk clos(incl body , env);
env = _ extend _env(env, “inc”, inc 1);

int temp 1 = inc 1.clos fun(2, inc _1.clos env)

For recursive functions, the function itself
needs to be in the environment

let rec fact n = if n <= 1 then n else n * (fact (n - 1))

int fact body(int n, env env) { : : :
- e ss Gets a little tricky depending on how
env = __extend_env(env, “n”, n); we define environments—we’ll revisit

if (n <= 1) { return n; } this later

else {

return n * _ lookup(env, “fact”).clos fun(n - 1,
__lookup(env, “fact”).clos _env);

¥

q¥§:~::fftend_env(env, “fact”, __mk_clos(fact_ifjfzi‘spy))

€SA43—=Fatt202a—-Tecture 11 39

}
e

	Slide 1: CS443: Compiler Construction
	Slide 2: Functional languages have first-class and nested functions
	Slide 3: Let’s take a (very) small subset of OCaml
	Slide 4: Operational semantics of the lambda calculus is by substitution
	Slide 5: Free Variables, formally
	Slide 6: Substitution Definition + Examples
	Slide 7: This definition enables partial application
	Slide 12: Nobody implements interpreters for functional PLs using substitution
	Slide 13: More efficient implementation: first try
	Slide 14: More efficient implementation: first try
	Slide 15: More efficient implementation: first try
	Slide 16: More efficient implementation: first try
	Slide 17: More efficient implementation: first try
	Slide 18: More efficient implementation: first try
	Slide 19: More efficient implementation: first try
	Slide 20: More efficient implementation: first try
	Slide 21: More efficient implementation: first try
	Slide 22: More efficient implementation: first try
	Slide 23: More efficient implementation: first try
	Slide 24: More efficient implementation: first try
	Slide 25: Second try: use closures
	Slide 26: With closures
	Slide 27: With closures
	Slide 28: With closures
	Slide 29: With closures
	Slide 30: With closures
	Slide 31: Next time
	Slide 32: Add the environment as an extra parameter to functions
	Slide 33: Can also just look y up in the environment
	Slide 34: We need to make sure the environment keeps up with ML variable scope
	Slide 35: As suggested by “extend” and “pop”, environment follows a stack
	Slide 36: A closure is a pair of the function code and the current environment
	Slide 37: (But the function code needs to be lifted to the top level)
	Slide 38: Call a closure by calling the function with the closure’s environment (NOT the current one)
	Slide 39: For recursive functions, the function itself needs to be in the environment

