CS443: Compiler
Construction

Lecture 14: Dataflow Analysis
Stefan Muller

Based on material by Steve Zdancewic



Dataflow algorithm can be used for more
than just liveness analysis

* Reaching definitions analysis
* Available expressions analysis
 Alias Analysis

* Constant Propagation



Generalized dataflow analysis: produce a set
of “facts” in and out of each node

* Every statement (node):
* Produces (generates) some set of facts
* Eliminates (kills) some set of facts

e Constraints at each node computed from other nodes based on
constraints (somewhat) specific to the analysis



Dataflow analysis in 4 steps

1. Define facts, gen, kill
2. Define constraints

Convert constraints to equations
» Sets should increase or decrease monotonically

4. Initialize facts for each node
* |nitial value should be consistent with whether sets are increasing or
decreasing



Liveness analysis as a dataflow analysis (Steps 1-2)

e Facts: Live variables
* gen[n] = use[n]
 kill[n] = def[n]

* Constraints:
* in[n] 2 gen[n]
e out[n] 2 in[n’] if n” € succ[n]
* in[n] 2 out[n] / kill[n]

CS 443 - Fall 2024 - Lecture 14



Liveness analysis as a dataflow analysis (Steps 3-4)

* Equations:

* out[n] := U coueeminln’]
* in[n] := gen[n] U (out[n] / kill[n])

* |nitial values:
e out[n] ;=@
* in[n]:=0Q

CS 443 - Fall 2024 - Lecture 14



Dataflow algorithm can be used for more
than just liveness analysis

* Reaching definitions analysis



Recal
for a

from last time: a variable might be live
ong time, but w/ different definitions

return v

CS 443 - Fall 2024 - Lecture 14



Reaching definitions:
What definitions of a var might reach a node?

F b=a+2
out[1]: {1}
in[2]: {1}
F c=b*b

out[2]: {1,2}
in[3]: {1,2}
? b=c+1
out[3]: {2,3}

in[4]: {2,3}
2 still reaches
return b * a

even though c

not live

CS 443 - Fall 2024 - Lecture 14



Reaching definitions:
What definitions of a var might reach a node?

Fif(a>2)

t[1N{}

in[2]: {} in[3]: {}

Fc=b*b Fb=c+1

out[2]: {2} out[3]: {3}
in4]: {2,3}
g

eturnb * a

CS 443 - Fall 2024 - Lecture 14



Reaching definitions as a dataflow analysis
(Step 1)

e Facts: set of nodes whose definition of a variable reaches n
e Let defs[a] be the set of nodes that define the variable a

n gen[n] kill[n]
a=bopc {n} defs[a] - {n}
a=loadb {n} defs[a] - {n}
store b, a 7 @
a=f(by,..,b,) {n} defs[a] - {n}
f(by,...,b,) ") ")

br L 1),

@
brall L2 0) @
@

return a

CS 443 - Fall 2024 - Lecture 14

11



Reaching definitions as a dataflow analysis
(Step 2)
e out[n] 2 gen|n] ?if(a>2)

* in[n] 2 out[n’] ifn’isin pred[n] /@\}\
e out[n] U kill[n] 2 in[n] inf2]: 4 F in3]: {3

* Equivalently: out[n] 2 in[n] / kill[n] c=b*b b=c+1

out[2]: {2} out[3]: {3}
in{4]: {2,3}
3

eturnb * a

CS 443 - Fall 2024 - Lecture 14 12



Reaching definitions as a dataflow analysis
(Steps 3-4) a
if (a>2)

*in[n] := Un’epred[n]OUt[n’] ta
* out[n] :=gen[n] U (in[n] / kill[n]) in[z]:An[s]- 0

c=b*b b=c+1
* Algorithm: initialize in[n] and out[n] to @ outf2]: 23 out[3]: {3}
in{4]: (2,3}
Eeturn b*a

CS 443 - Fall 2024 - Lecture 14 13



Dataflow algorithm can be used for more
than just liveness analysis

* Available expressions analysis



When is this optimization safe?

ea =X + 1 a = X + As I?Sr:]g’tas a
» redefined
b =x+1 b = a here

* Available expressions: nodes whose definitions are “available”

CS 443 - Fall 2024 - Lecture 14 15



Available =/= Live

a =X+ 1
C = a

b =x+1
d =Db * 2
return d

C

a=x+1:

Live? No
Available? Yes

CS 443 - Fall 2024 - Lecture 14

16



Available expressions as a dataflow analysis
(Step 1)

n: gen[n] kill[n]

a=bopc {n} uses|[a] Memory at loc. x

a=loadb {n} uses|a]

store b, a 1), uses[*x] (for all x that may equal a)

br L ? ? Alias analysis!

brall L2 1) 1),

a =f(by,...,b,) 1) uses[a]U uses[*x] (for all x)

f(by,...,.b,) 1) uses[*x] (for all x)

return a 1) ") (assuming impure
functions)

CS 443 - Fall 2024 - Lecture 14 17



Available expressions as a dataflow analysis
(Steps 2-3) o
if (a>2)

e out[n] 2 gen|n] (1]}
*in[n] € out[n’] ifn’isin pred[n] in[z];{}/m\\nm. a

» out[n] U kill[n] 2 in[n] Eczb*b szc”
* Equivalently: out[n] 2 in[n] / kill[n] outl2]: b * 5 out[3]: {c + 1}
in4]: {}
*in[n] := N cqmoutln’] Heturnb*a

* out[n] :=gen[n] U (in[n] / kill[n])

CS 443 - Fall 2024 - Lecture 14 18



Available expressions as a dataflow analysis
(Steps 3-4)

e in[n] := M gmout[n’]
e out[n] :=gen[n] U (in[n] / kill[n])

* |Initialize in[n] and out[n] to {set of all nodes}
* |terate the update equations until a fixed point is reached

* The algorithm terminates because in[n] and out[n] decrease monotonically
e At most to a minimum of the empty set

* The algorithm is precise because it finds the largest sets that satisfy the
constraints.

CS 443 - Fall 2024 - Lecture 14 19



Contrasting RD/AE

in[n] :=[U} cpreqrmoutln’] in[n] =[N} epreqinoUtin’]

out[n] := gen[n] U (in[n] / kill[n]) out[n] :=gen[n] U (in[n] / kill[n])
Which definitions may reach n? Which expressions must reach n?
Initialize to @ Initialize to all expressions

“May” analysis “Must” analysis

CS 443 - Fall 2024 - Lecture 14 20



Contrasting RD/Liveness

Reaching Defs Liveness

in[n] := U dpreginout(n’] out[n] := U cguegminin’]
out[n] := gen[n] U (in[n] / kill[n]) in[n] := gen[n] U (out[n] / kill[n])
Propagate information forward Propagate information backward

Forward analysis Backward analysis

CS 443 - Fall 2024 - Lecture 14 21



I S ™ E,

Liveness: Reaching Definitions:
What variables may be needed What definitions may reach n?
fromn?

Very Busy Expressions: Available Expressions:
What expressions will be defined What expressions must reach n?

on every path from n?

CS 443 - Fall 2024 - Lecture 14 22



	Slide 1: CS443: Compiler Construction
	Slide 2: Dataflow algorithm can be used for more than just liveness analysis
	Slide 3: Generalized dataflow analysis: produce a set of “facts” in and out of each node
	Slide 4: Dataflow analysis in 4 steps
	Slide 5: Liveness analysis as a dataflow analysis (Steps 1-2)
	Slide 6: Liveness analysis as a dataflow analysis (Steps 3-4)
	Slide 7: Dataflow algorithm can be used for more than just liveness analysis
	Slide 8: Recall from last time: a variable might be live for a long time, but w/ different definitions
	Slide 9: Reaching definitions: What definitions of a var might reach a node?
	Slide 10: Reaching definitions: What definitions of a var might reach a node?
	Slide 11: Reaching definitions as a dataflow analysis (Step 1)
	Slide 12: Reaching definitions as a dataflow analysis (Step 2)
	Slide 13: Reaching definitions as a dataflow analysis (Steps 3-4)
	Slide 14: Dataflow algorithm can be used for more than just liveness analysis
	Slide 15: When is this optimization safe?
	Slide 16: Available =/= Live
	Slide 17: Available expressions as a dataflow analysis (Step 1)
	Slide 18: Available expressions as a dataflow analysis (Steps 2-3)
	Slide 19: Available expressions as a dataflow analysis (Steps 3-4)
	Slide 20: Contrasting RD/AE
	Slide 21: Contrasting RD/Liveness
	Slide 22

