
CS 443 - Fall 2024 - Lecture 15 1

Take some time to try to figure
these out---I’ll ask for volunteers to
share their answers around 10:05

CS443: Compiler
Construction
Lecture 15: Loop Optimization

Stefan Muller

Based on material by Steve Zdancewic, Stephen Chong and Greg Morrisett

CS 443 - Fall 2024 - Lecture 15 2

Loop optimizations are especially important!

• Programs spend most of the time in loops

• Lots of loop optimizations:

CS 443 - Fall 2024 - Lecture 15 3

• Loop invariant removal
• Induction variable elimination
• Loop unrolling
• Loop fusion
• Loop fission

• Loop peeling
• Loop interchange
• Loop tiling
• Loop parallelization
• Software pipelining

Invariant removal: Don’t recompute things in
a loop
l0:

 %i = bitcast i32 0 to i32

 br %l1

l1:

 %i = add i32 %i 1

 %t = add i32 %a %b

 %el = getelementptr i32, i32* %arr, i32 %i

 store i32 %t, i32* %el

 %lt = icmp lt i32 %i %N

 br i1 %lt, label %l1, label %l2

l2:

 ret %t

CS 443 - Fall 2024 - Lecture 15 4

Invariant removal: Don’t recompute things in
a loop
l0:

 %i = bitcast i32 0 to i32

 %t = add i32 %a %b

 br %l1

l1:

 %i = add i32 %i 1

 %el = getelementptr i32, i32* %arr, i32 %i

 store i32 %t, i32* %el

 %lt = icmp lt i32 %i %N

 br i1 %lt, label %l1, label %l2

l2:

 ret %t

CS 443 - Fall 2024 - Lecture 15 5

Loop induction variable: Avoid recomputation
based on loop induction variables
l0:

 %i = bitcast i32 0 to i32

l1:

 %t1 = mul i32 %i 4

 %t2 = add i32 %a %t1

 %s = add i32 %s %t2

 %i = add i32 %i 1

 %lt = icmp lt %i 100

 br i1 %lt, label %l1, label %l2

l2: …

CS 443 - Fall 2024 - Lecture 15 6

t1 is always equal to i * 4

Loop induction variable: Avoid recomputation
based on loop induction variables
l0:

 %i = bitcast i32 0 to i32

 %t1 = bitcast i32 -4 to i32

l1:

 %t1 = add i32 %t1 4

 %t2 = add i32 %a %t1

 %s = add i32 %s %t2

 %i = add i32 %i 1

 %lt = icmp lt %i 100

 br i1 %lt, label %l1, label %l2

l2: …

CS 443 - Fall 2024 - Lecture 15 7

t2 is always a + i * 4

Loop induction variable: Avoid recomputation
based on loop induction variables
l0:

 %i = bitcast i32 0 to i32

 %t1 = bitcast i32 -4 to i32

 %t2 = bitcast i32 %a to i32

l1:

 %t1 = add i32 %t1 4

 %t2 = add i32 %t2 4

 %s = add i32 %s %t2

 %i = add i32 %i 1

 %lt = icmp lt %i 100

 br i1 %lt, label %l1, label %l2

l2: …

CS 443 - Fall 2024 - Lecture 15 8

Can eliminate t1!

Loop induction variable: Avoid recomputation
based on loop induction variables
l0:

 %i = bitcast i32 0 to i32

 %t2 = bitcast i32 %a to i32

l1: %t2 = add i32 %t2 %4

 %s = add i32 %s %t2

 %i = add i32 %i 1

 %lt = icmp lt %i 100

 br i1 %lt, label %l1, label %l2

l2: …

CS 443 - Fall 2024 - Lecture 15 9

Can eliminate i!

Loop induction variable: Avoid recomputation
based on loop induction variables
l0:

 %i = bitcast i32 0 to i32

 %t2 = bitcast i32 %a to i32

 %endt2 = add i32 %a 400

l1:

 %t2 = add i32 %t2 %4

 %s = add i32 %s %t2

 %lt = icmp lt %t2 %endt2

 br i1 %lt, label %l1, label %l2

l2: …

CS 443 - Fall 2024 - Lecture 15 10

Before we can optimize loops, we have to find them

• In C (without goto): easy!

• In LLVM: surprisingly hard!

• Definition (loop):
• Subset S of nodes in CFG

• Designated “header” node h

• S is strongly connected

• No edge from outside S to S \ {h}

CS 443 - Fall 2024 - Lecture 15 11

h

h

h

Loops can be nested

CS 443 - Fall 2024 - Lecture 15 12

h

h

Non-example: (there can’t be a header)

• (But this can’t arise in C/C++ without goto)

CS 443 - Fall 2024 - Lecture 15 13

A node d dominates n if every path (from
start) to n must go through d

CS 443 - Fall 2024 - Lecture 15 14

d

We can define loops based on dominators

• A back edge is an edge from n to a dominator d

• If there’s a back edge n -> d, there is a loop consisting of the set of
nodes x such that d dominates x and there is a path from x to n not
including d

CS 443 - Fall 2024 - Lecture 15 15

d

d

d

n

n
n

Example

• For each node, what nodes does it dominate? Back edges?

• a dominates a, b, c, d, e, f, g, h

• b dominates b, c, d, e, f, g, h

• c dominates c, e

• d dominates d

• f dominates f, g, h

• g dominates g, h

• h dominates h,

• Back edges: g -> b, h -> a

CS 443 - Fall 2024 - Lecture 15 16

a

b

c d

e
f

g

h

We can calculate dominators with a dataflow
analysis!
• out[n] = set of nodes that dominate n

• in[n] := ∩n’∈pred[n]out[n’]

• out[n] := in[n] ∪ {n}

• Forward must analysis: initialize out[n], in[n] to all nodes

CS 443 - Fall 2024 - Lecture 15 17

We can represent dominators with a
“dominator tree”
• Edge to n from its

“immediate dominator”
(dominator other than n that
is dominated by other
dominators other than n)

CS 443 - Fall 2024 - Lecture 15 18

1

2

3 4

5 6

7 8

9 0

1

2

3 4

5 6

7 8

9 0

Identifying loop invariants

• An instruction %x = opc op1, op2, …, opN represented by a
node n is invariant for a loop if for each operand opi:
• opi is constant, or

• all definitions of opi that reach n are outside the loop, or

• only one definition reaches opi and it is a loop invariant

CS 443 - Fall 2024 - Lecture 15 19

Loop invariant example from before

l0:

 %i = bitcast i32 0 to i32

 br %l1

l1:

 %i = add i32 %i 1

 %t = add i32 %a %b

 %el = getelementptr i32, i32* %arr, i32 %i

 store i32 %t, i32* %el

 %lt = icmp lt i32 %i %N

 br i1 %lt, label %l1, label %l2

l2:

 ret %t

CS 443 - Fall 2024 - Lecture 15 20

Actually moving (hoisting) invariants out of
the loop is pretty tricky
• Move to a “pre-header” (CFG node before header)

CS 443 - Fall 2024 - Lecture 15 21

Need to make sure hoisting wouldn’t interfere
with other uses!
l0:

 %i = bitcast i32 0 to i32

 br %l1

l1:

 %i = add i32 %i 1

 %el = getelementptr i32, i32* %arr, i32 %i

 store i32 %t, i32* %el

 %t = add i32 %a %b

 %lt = icmp lt i32 %i %N

 br i1 %lt, label %l1, label %l2

l2:

 ret %t

CS 443 - Fall 2024 - Lecture 15 22

Need to make sure hoisting wouldn’t interfere
with other uses!
• n := %x = opc op1, op2, …, opN is safe to hoist if:

• n dominates all loop exits at which %x is live, and

• there is only one definition of x in the loop, and

• x is not live at the pre-header

CS 443 - Fall 2024 - Lecture 15 23

for (i = 0; i < 100; i += 2) {
 t = a + b;
 a[i] = t;
 t = a – b;
 a[i + 1] = t;
}

t = 0;
while(1) {
 break;
 t = a + b;
 a[i] = t;
}
return t;Multiple definitions of t!

t doesn’t dominate
the break

Loop Unrolling: Copy over the body of a loop

for (int i = 0; i < n; i++) {

 a[i] = i;

}

//Handle the first few in case n not a multiple of 3

for (int i = 0; i < n % 3; ++i) a[i] = i;

for (; i < n; i+=3) {

 a[i] = i;

 a[i + 1] = i + 1;

 a[i + 2] = i + 2;

}

CS 443 - Fall 2024 - Lecture 15 24

Why is this an optimization?

Loop unrolling: costs and benefits

• Benefits:
• Amortize tests, jumps over more instructions

• Costs:
• Program size increases (why is this a problem?)

CS 443 - Fall 2024 - Lecture 15 25

Loop Peeling: “Peel off” the first or last N
iterations of a loop
for (int i = 0; i < N; i++) {

 if (i <= 1) {

 a[i] = i;

 } else {

 a[i] = a[i – 1] + a[i – 2];

 }

}

CS 443 - Fall 2024 - Lecture 15 26

a[0] = 0;

a[1] = 1;

for (int i = 2; i < N; i++) {

 a[i] = a[i – 1] + a[i – 2];

}

Loop Interchange: Swap order of nested loops

for (int i = 0; i < w; i++) {

 for (int j = 0; j < h; j++) {

 sum += a[j][i];

 }

}

for (int j = 0; j < h; j++) {

 for (int i = 0; i < w; i++) {

 sum += a[j][i];

 }

}

CS 443 - Fall 2024 - Lecture 15 27

Why is this an optimization?

	Slide 1
	Slide 2: CS443: Compiler Construction
	Slide 3: Loop optimizations are especially important!
	Slide 4: Invariant removal: Don’t recompute things in a loop
	Slide 5: Invariant removal: Don’t recompute things in a loop
	Slide 6: Loop induction variable: Avoid recomputation based on loop induction variables
	Slide 7: Loop induction variable: Avoid recomputation based on loop induction variables
	Slide 8: Loop induction variable: Avoid recomputation based on loop induction variables
	Slide 9: Loop induction variable: Avoid recomputation based on loop induction variables
	Slide 10: Loop induction variable: Avoid recomputation based on loop induction variables
	Slide 11: Before we can optimize loops, we have to find them
	Slide 12: Loops can be nested
	Slide 13: Non-example: (there can’t be a header)
	Slide 14: A node d dominates n if every path (from start) to n must go through d
	Slide 15: We can define loops based on dominators
	Slide 16: Example
	Slide 17: We can calculate dominators with a dataflow analysis!
	Slide 18: We can represent dominators with a “dominator tree”
	Slide 19: Identifying loop invariants
	Slide 20: Loop invariant example from before
	Slide 21: Actually moving (hoisting) invariants out of the loop is pretty tricky
	Slide 22: Need to make sure hoisting wouldn’t interfere with other uses!
	Slide 23: Need to make sure hoisting wouldn’t interfere with other uses!
	Slide 24: Loop Unrolling: Copy over the body of a loop
	Slide 25: Loop unrolling: costs and benefits
	Slide 26: Loop Peeling: “Peel off” the first or last N iterations of a loop
	Slide 27: Loop Interchange: Swap order of nested loops

