N> Feel free to take candy!
a (Subject to the following restrictions)

]
V=

* For every pair of people, if your first or last names start with the same
letter, you can’t take the same kind of candy.
e Stefan has already taken a Kit Kat

(Don’t worry, if this only leaves you with candy you don’t like/are allergic
to/etc., you can get more)

CS 443 - Fall 2024 - Lecture 19 1

CS443: Compiler
Construction

Lecture 19: Register Allocation
Stefan Muller

Based on material by Steve Zdancewic

Register allocation: going from unlimited
temporaries to fixed number of registers

Register |ABI Name
=) Zero
x1 ra
X2 sp
X3 gp
x4 tp

xbh-T t0-2

x8 s0/fp

®9 sl
x10-11 al-1
x12-17 az2-T
x18-27 s2-11
x28-31 t3-té6

Special purpose

General purpose

Sometimes special purpose
(by convention)

General purpose

Find: mapping from program variables to
registers

 What if there aren’t enough registers?
int annoying(int[] a) {

int v@ = a[o@];
int vl = a[l1];
int v2 = a[2];
int v3 = a[3];
int v4 = a[4];
int v5 = a[5];
int v6 = a[6];
int v7 = a[7];
int v8 = a[8];
int v9 = a[9];

return v + v1 + v2 + v3 + v4 + ..

Find: mapping from program variables to

(registers U stack locations
type alloc _res = InReg of R.reg
| OnStack of int (* stack slot, ©-N *)
| InMem of R.symbol (* globals on heap *)

CS 443 - Fall 2024 - Lecture 19

Many quality metrics for allocation

* Program semantics is preserved (i.e. the behavior is the same)
* Register usage is maximized

* Moves between registers are minimized

* Calling conventions / architecture requirements are obeyed

Recall: A variable is “live” when its value is
needed

int f(int x) {

, X is live
int a = X + 2;

< a and x are live

int b = a * a;

) b and x are live
int ¢ = b + X;

cis live

return c;

CS 443 - Fall 2024 - Lecture 19

Liveness analysis is based on uses and
definitions

* For a node/statement s define:
e use[s] : set of variables used (i.e. read) by s
e def[s] : set of variables defined (i.e. written) by s

* Examples:
c az=b+c use[s] = {b,c} def[s] = {a}

« aza+1l use[s] = {a} def[s] = {a}

CS 443 - Fall 2024 - Lecture 19

Liveness analysis as a dataflow analysis (Steps 1-2)

e Facts: Live variables
* gen[n] = use[n]
 kill[n] = def[n]

* Constraints:
* in[n] 2 gen[n]
e out[n] 2 in[n’] if n” € succ[n]
* in[n] 2 out[n] / kill[n]

CS 443 - Fall 2024 - Lecture 19

Liveness analysis as a dataflow analysis (Steps 3-4)

* Equations:

* out[n] := U coueeminln’]
* in[n] := gen[n] U (out[n] / kill[n])

* |nitial values:
e out[n] ;=@
* in[n]:=0Q

CS 443 - Fall 2024 - Lecture 19

10

For register allocation: live(x)

* live(x) = set of variables that are live-in to the definition of x
e (assuming SSA)

Linear Scan: a simple, greedy algorithm

s W

Compute liveness information: live(x)
Let regs be the set of usable registers
Maintain "layout" alloc that maps uidstoalloc reg

Scan through the program. For each instruction that defines a var x
* used={r | reg r = alloc(y)st.ye€ live (x)}
* avallable = regs - used

* Ifavailable isempty: // no registers available, spill
alloc(x) := OnStack n; n := I'n + 1

* Otherwise, pick r in available: // choose an available register
alloc(x) := InReg r

CS 443 - Fall 2024 - Lecture 19 12

Linear Scan Example (registers: r0, r1, r2)

int f(int x) { Available
int a = x + 2; ro, rl, r2 a->r0
int b = a * a; rl, r2 b ->rl
int ¢ = b + a; r2 c->r2
return c;

Linear scan is OK, but we can do better

Who had “reduce it to a graph problem” on
the|r CS Bingo card?

Nodes of the graph are variables

* Edges connect variables that interfere with each other

— Two variables interfere if their live ranges intersect (i.e. there is an edge in the control-flow graph
across which they are both live).

* Register assignment is a graph coloring.
— A graph coloring assigns each node in the graph a color (register)
— Any two nodes connected by an edge must have different colors.

 Example:
%b1l =add i32 %a, 2
%c = multi32 %b1l, %bl @ @
%b2 =add i32 %c, 1

%ans = add i32 %b2, %a @ @ @ @ @ @

return %ans;

Interference Graph 2-Coloring of the graph
red =r8
CS 443 - Fall 2024 - Lecture 19 yellow =r9 15

Heuristics for graph coloring come down to
order in which you color nodes

* Linear Scan: Order of definitions in program
e Simplification: (Roughly) color high degree nodes first

Coloring by simplification

1. Build Interference Graph

2. Simplify the graph by removing nodes one at a time, putting them
on a stack

3. Select colors for nodes in order of the stack

We don’t want to treat move instructions as

conflicts/interference

%a = 1nttoptr 132* %aptr to 132
%b = add 132 %a 8

%bptr = ptrtoint 132 %b to 132*%
%»C = load 132, 132* %aptr

%d = load 132, 132* %bptr

CS 443 - Fall 2024 - Lecture 19

%a and %aptr are live
at the same time, but

can (and should) be in
the same register

18

Steps for a simple graph-coloring allocator

1. Build interference graph

2. Simplify graph by removing nodes one at a time, pusing them on a
stack, until all nodes are on stack

3. As we simplify, identify nodes to potentially spill

4. Select colors/registers for nodes (in reverse order they were pushed
to the stack)

Build interference graph

* For each instruction:
* If the inst defines a variable a, with b, ..., b live-out:
* If the instruction is not a move, add edges (3, b,), ..., (3, b,)
* If the instruction is a move a = ¢, add edges {(a, b,) | b, # c}

Coloring by simplification: Simplify/Spill

* Let K = number of registers
* Let S = empty stack
* While graph not empty:

* |f there exists a node m with fewer than K neighbors:

e Remove m from the graph, pushiton S
 Guaranteed that we will be able to find a color for m

* Otherwise:
* Pick a node m, remove it from the graph, push it on S (we may end up spilling it)

Coloring by simplification: Select

* While S not empty:
e PopmfromS

* If there is a color (register) available for m:
* Choose an available color (register) for m and add it back to the graph

e Otherwise:
e Spill m —putitin the next stack slot

Graph Coloring Example (Appel)

g = mem[j + 12]
h=k-1

f =g *h

e = mem[j + 8]

m = mem[j + 16]

b = mem[f]

C =e + 8

d =c % Move
K =m+ 4

j=Db % Move

% d, k, j live-out

Graph Coloring Example (Appel)

g

Graph Coloring Example (Appel)

Graph Coloring Example (Appel)

K

Graph Coloring Example (Appel)
H B

cm - A Q

Graph Coloring Example (Appel)
H B

oM O A Q .

Graph Coloring Example (Appel)

| oS5 A Q W M

CS 443 - Fall 2024 - Lecture 19

29

Graph Coloring Example (Appel)

cm S X Q W D —h

CS 443 - Fall 2024 - Lecture 19

30

Graph Coloring Example (Appel)

oM o R Q W D -h O

CS 443 - Fall 2024 - Lecture 19

31

Graph Coloring Example (Appel)

o - AR QW M -Hh T 0N

CS 443 - Fall 2024 - Lecture 19

32

Graph Coloring Example (Appel)

. H B

C f
b

.F

e , K

J

d d
K h

h g

g

CS 443 - Fall 2024 - Lecture 19

33

Graph Coloring Example (Appel)

o - AR QW M -Hh T 0N

CS 443 - Fall 2024 - Lecture 19

34

Graph Coloring Example (Appel)

oM o R Q W D -h O

CS 443 - Fall 2024 - Lecture 19

35

Graph Coloring Example (Appel)

cm o K Q W D —h
~

CS 443 - Fall 2024 - Lecture 19

36

Graph Coloring Example (Appel)

om S KX Q UW. M
~

CS 443 - Fall 2024 - Lecture 19

37

Graph Coloring Example (Appel)

oM O A Q .

CS 443 - Fall 2024 - Lecture 19

38

Graph Coloring Example (Appel)

| -5 KX Q

CS 443 - Fall 2024 - Lecture 19

39

Graph Coloring Example (Appel)

K

Graph Coloring Example (Appel)
H B

Graph Coloring Example (Appel)
H B

g

Graph Coloring Example (Appel)

Graph Coloring Example (Appel)

d. A~ Q. N T 3 M +Hh >0

mem[j + 12]

k - 1

g *h
mem[j + 8]
mem[j + 16]
mem|[f]

e + 8

C

m+ 4

b

CS 443 - Fall 2024 - Lecture 19 a4

Graph Coloring Example (Appel)

r4
r2
N2
r4
rl
r2
r3
r4
rl
r3

mem[r3 + 12] - .

rl -1
r4 * r2

mem[r3 + 8]

mem[r3 + 16] ‘ ‘
mem[r2] ‘\

e + 8

r3 Next time:
rl + 4 Avoid these

r2

CS 443 - Fall 2024 - Lecture 19 45

Graph Coloring Example (Appel)

Graph Coloring Example (Appel)

Graph Coloring Example (Appel)

j n Oq uo

Graph Coloring Example (Appel)

f =
k

] (e}

g G
C o/

h

Graph Coloring Example (Appel)

S5 N0 0 W XA -+ Q M

CS 443 - Fall 2024 - Lecture 19

50

Graph Coloring Example (Appel)

> n U XA QA D B O

CS 443 - Fall 2024 - Lecture 19

51

Graph Coloring Example (Appel)

> 0O 0 .

Well, gotta spill
(we might have

gotten lucky and still
found a color)

CS 443 - Fall 2024 - Lecture 19

52

Graph Coloring Example (Appel)

Graph Coloring Example (Appel)

We need to load j from memory... into what?

r2 = mem[j + 12]
ril=r1-1

r2 = r2 * ril

r3 = mem[j + 8]
rl = mem[]j + 16]
r2 = mem[r2]

r3 =r3 + 8

r3 =r3

ril=rl1l + 4

j = r2

CS 443 - Fall 2024 - Lecture 19

Option 1: Move to a temp, do reg alloc again

templ = stack[9] - .

r2 = mem[templ + 12]
ri=r1-1
r2 =r2 *ril

templ = stack[9]
r3 = mem[templ + 8]
templ = stack[9]
rl = mem[templ + 16]

r2 = mem[r2]
r3 =r3+ 8
r3 =r3
ri=r1+4
templ = r2

stack[@] = templ

CS 443 - Fall 2024 - Lecture 19 56

Option 2: Reserve a register or two for this

r4
r2
rl
r2
r4
r3
r4
rl
r2
r3
r3
rl
r4

stack[0]
mem[rd4 + 12]
ri -1

r2 * ri
stack[9]
mem[rd + 8]
stack[9]
mem[rd + 16]
mem[r2]

r3 + 8

r3

rl + 4

r2

stack[@] = r4

CS 443 - Fall 2024 - Lecture 19

57

Graph Coloring Example (Appel)

r4
r2
N2
r4
rl
r2
r3
r4
rl
r3

mem[r3 + 12] - .

rl -1

r4 * r2

mem[r3 + 8]

mem[r3 + 16]

mem[r2] 0<\‘
o + 8 This

r3 Mext time:
e

r2

CS 443 - Fall 2024 - Lecture 19 58

Coalescing: Combining nodes to eliminate
moves

d. A~ Q. N T 3 M +Hh >0

mem [J + 12] Blue edge + no black
k - 1 edge: would like to

coalesce

g *h
mem[j + 8]
mem[j + 16]
mem[f]

e + 8

C

m+ 4

b

CS 443 - Fall 2024 - Lecture 19 59

Coalescing unsafely can make a graph

uncolorable
from j and b!

S 00 KX S
M

¥ 1 3
| p—

-

+

=

N

| I—

D
=
+
(00]
—

(j + 16]

=
D
+ S

| N—

A Q N O 3 M h 509
| N | | | Y | N | A | A | N |
=
M
=

0 hd. . T

|
Isnm
+
N

We’d rather move
than spill

CS 443 - Fall 2024 - Lecture 19 60

Conservative coalescing strategies will always
keep a graph colorable

* Briggs: a and b can be coalesced if the resulting node ab will have
fewer than K neighbors of degree >= K

* (Recall: K = number registers/colors)

Conservative coalescing strategies will always
keep a graph colorable

* Briggs: a and b can be coalesced if the resulting node ab will have
fewer than K neighbors of degree >= K

* (Recall: K = number registers/colors)

CS 443 - Fall 2024 - Lecture 19

62

Conservative coalescing strategies will always
keep a graph colorable

* Briggs: a and b can be coalesced if the resulting node ab will have
fewer than K neighbors of degree >= K

* (Recall: K = number registers/colors)

Conservative coalescing strategies will always
keep a graph colorable

* Briggs is conservative:

» Coalescing nodes following Briggs is guaranteed not to make a graph
uncolorable

* Briggs might miss nodes that could still be safely coalesced

Conservative coalescing strategies will always
keep a graph colorable

* Briggs is conservative:

» Coalescing nodes following Briggs is guaranteed not to make a graph
uncolorable

* Briggs might miss nodes that could still be safely coalesced

(2

()

5
& s

Conservative coalescing strategies will always
keep a graph colorable

* George: Nodes a and b can be coalesced if, for every neighbor t of g,
either:
* t already interferes with b or
* t has degree < K

jand b can be

coalesced for
K=4, not K=3

CS 443 - Fall 2024 - Lecture 19

66

Conservative coalescing strategies will always
keep a graph colorable

* George: Nodes a and b can be coalesced if, for every neighbor t of g,
either:
* t already interferes with b or
* t has degree < K

jand b can be

coalesced for
K=4, not K=3

(and the graph is not 3-colorable!)

CS 443 - Fall 2024 - Lecture 19 67

Graph coloring with coalescing

1. Build interference graph and classify nodes as move-related or non-
move-related

2. Simplify, only removing non-move-related nodes of degree < K
3. Coalesce move-related nodes using a conservative heuristic

4. Freeze move-related nodes (give up trying to coalesce them) if can’t
simplify or coalesce

5. Spill (potentially) a node w/ degree >= K, removing it from the
graph and pushing it on the stack

6. Select colors for nodes in stack order

w/o coalescing:

T
Build CSi\mplify Spill > Select
V\—/

Until graph is empty

(If not reserving registers for load/store)

ntil graph is empty

w/ coalescing:

P ial
Simplify —— Coalesce ——— Freeze — (Potential) Select

. Spill
Until all nodes are high-degree
or move-related

Build

(If not reserving registers for load/store)

CS 443 - Fall 2024 - Lecture 19 69

Coalescing Example (Appel)

Coalescing Example (Appel)
H B

K

Coalescing Example (Appel)
H B

K

Coalescing Example (Appel)
k W

CS 443 - Fall 2024 - Lecture 19

73

Coalescing Example (Appel)
iy H B

CS 443 - Fall 2024 - Lecture 19

74

Coalescing Example (Appel)

jb
cd
k

CS 443 - Fall 2024 - Lecture 19

75

Coalescing Example (Appel)
H B

CS 443 - Fall 2024 - Lecture 19

76

Coalescing Example (Appel)

jb
cd
k

CS 443 - Fall 2024 - Lecture 19

77

Coalescing Example (Appel)
k W

CS 443 - Fall 2024 - Lecture 19

78

Coalescing Example (Appel)

CS 443 - Fall 2024 - Lecture 19

79

Coalescing Example (Appel)

.. X Q. N ©O 3 ®d +Hh 5 0Q

mem[j + 12]

k - 1

g *h
mem[j + 8]
mem[j + 16]
mem[f]

e + 8

C

m+ 4

b

CS 443 - Fall 2024 - Lecture 19 80

Coalescing Example (Appel)

r4
r2
r3
r4
r2
rl
r4
r4
N2
rl

mem[rl + 12]
r2 -1

r4 * r2
mem[rl + 8]
mem[rl + 16]
mem[r3]

rd + 8

r4

m+ 4

rl

CS 443 - Fall 2024 - Lecture 19

81

Coalescing Example (Appel)

r4
r2
r3
r4
r2
rl
r4
r2

mem[rl + 12]
r2 -1

r4 * r2
mem[rl + 8]
mem[rl + 16]

mem[r3]
r4 + 8
m+ 4

CS 443 - Fall 2024 - Lecture 19

82

Another example

	Slide 1: Feel free to take candy! (Subject to the following restrictions)
	Slide 2: CS443: Compiler Construction
	Slide 3: Register allocation: going from unlimited temporaries to fixed number of registers
	Slide 4: Find: mapping from program variables to registers
	Slide 5: Find: mapping from program variables to (registers ∪ stack locations)
	Slide 6: Many quality metrics for allocation
	Slide 7: Recall: A variable is “live” when its value is needed
	Slide 8: Liveness analysis is based on uses and definitions
	Slide 9: Liveness analysis as a dataflow analysis (Steps 1-2)
	Slide 10: Liveness analysis as a dataflow analysis (Steps 3-4)
	Slide 11: For register allocation: live(x)
	Slide 12: Linear Scan: a simple, greedy algorithm
	Slide 13: Linear Scan Example (registers: r0, r1, r2)
	Slide 14: Linear scan is OK, but we can do better
	Slide 15: Who had “reduce it to a graph problem” on their CS Bingo card?
	Slide 16: Heuristics for graph coloring come down to order in which you color nodes
	Slide 17: Coloring by simplification
	Slide 18: We don’t want to treat move instructions as conflicts/interference
	Slide 19: Steps for a simple graph-coloring allocator
	Slide 20: Build interference graph
	Slide 21: Coloring by simplification: Simplify/Spill
	Slide 22: Coloring by simplification: Select
	Slide 23: Graph Coloring Example (Appel)
	Slide 24: Graph Coloring Example (Appel)
	Slide 25: Graph Coloring Example (Appel)
	Slide 26: Graph Coloring Example (Appel)
	Slide 27: Graph Coloring Example (Appel)
	Slide 28: Graph Coloring Example (Appel)
	Slide 29: Graph Coloring Example (Appel)
	Slide 30: Graph Coloring Example (Appel)
	Slide 31: Graph Coloring Example (Appel)
	Slide 32: Graph Coloring Example (Appel)
	Slide 33: Graph Coloring Example (Appel)
	Slide 34: Graph Coloring Example (Appel)
	Slide 35: Graph Coloring Example (Appel)
	Slide 36: Graph Coloring Example (Appel)
	Slide 37: Graph Coloring Example (Appel)
	Slide 38: Graph Coloring Example (Appel)
	Slide 39: Graph Coloring Example (Appel)
	Slide 40: Graph Coloring Example (Appel)
	Slide 41: Graph Coloring Example (Appel)
	Slide 42: Graph Coloring Example (Appel)
	Slide 43: Graph Coloring Example (Appel)
	Slide 44: Graph Coloring Example (Appel)
	Slide 45: Graph Coloring Example (Appel)
	Slide 46: Graph Coloring Example (Appel)
	Slide 47: Graph Coloring Example (Appel)
	Slide 48: Graph Coloring Example (Appel)
	Slide 49: Graph Coloring Example (Appel)
	Slide 50: Graph Coloring Example (Appel)
	Slide 51: Graph Coloring Example (Appel)
	Slide 52: Graph Coloring Example (Appel)
	Slide 53: Graph Coloring Example (Appel)
	Slide 54: Graph Coloring Example (Appel)
	Slide 55: We need to load j from memory… into what?
	Slide 56: Option 1: Move to a temp, do reg alloc again
	Slide 57: Option 2: Reserve a register or two for this
	Slide 58: Graph Coloring Example (Appel)
	Slide 59: Coalescing: Combining nodes to eliminate moves
	Slide 60: Coalescing unsafely can make a graph uncolorable
	Slide 61: Conservative coalescing strategies will always keep a graph colorable
	Slide 62: Conservative coalescing strategies will always keep a graph colorable
	Slide 63: Conservative coalescing strategies will always keep a graph colorable
	Slide 64: Conservative coalescing strategies will always keep a graph colorable
	Slide 65: Conservative coalescing strategies will always keep a graph colorable
	Slide 66: Conservative coalescing strategies will always keep a graph colorable
	Slide 67: Conservative coalescing strategies will always keep a graph colorable
	Slide 68: Graph coloring with coalescing
	Slide 69
	Slide 70: Coalescing Example (Appel)
	Slide 71: Coalescing Example (Appel)
	Slide 72: Coalescing Example (Appel)
	Slide 73: Coalescing Example (Appel)
	Slide 74: Coalescing Example (Appel)
	Slide 75: Coalescing Example (Appel)
	Slide 76: Coalescing Example (Appel)
	Slide 77: Coalescing Example (Appel)
	Slide 78: Coalescing Example (Appel)
	Slide 79: Coalescing Example (Appel)
	Slide 80: Coalescing Example (Appel)
	Slide 81: Coalescing Example (Appel)
	Slide 82: Coalescing Example (Appel)
	Slide 83: Another example

