CS443: Compiler
Construction

Lecture 2: Lexing, Finite State Machines, Regular Expressions

Announcements

* Project O out, due 9/3

 Office hour locations swapped this week:
* Wednesday, 10:30-11:30 SB 218E
* Thursday, 2-3 Zoom (link in email, I’ll also put it on Canvas)

Compilers translate code in phases

“Front End” “Back End”
A A
[Analysis A\ [Optimization A

Source Lexical Tok Abstract Intermed.
Code Analyzer OREHS Syntax Rep.
Assign temp = ¢ - 1 subl %rax, 1
a=b+c-1 VAR a —— ’
a =b + tem addl %rax, %rbx
EQUAL R N P ’
VAR b —
OP + b -
VAR C s
OP - ¢ 1
CONST 1

CS 443 - Fall 2024 - Lecture 2 3

Terminology

* Lexical analysis “lexing”
* Performed by lexical analyzer “lexer”
* Produces stream of tokens

Tokens are specified using a regular grammar

* Regular expressions R:

* £ Empty string

e abc Exactly the string abc Literal

* R,R, R, followed by R, Concatenation
*R, | R, R, or R, Alternation

* R” Zero or more R Kleene Star

* R* One or more R

* R? Optional R

e [a-Z] a,b,cd ..z

Regex examples (Alphabet: g, b)

Write a regex that recognizes all strings:
* with at least one a (alb)*a(a|b)*
* where every a is immediately followed by a b b*(ab+)*

* beginning and ending in b b|(b(a]b)*b)

Tokens are specified using a regular grammar

digit ::= [0-9]
alpha ::= [a-Z]
ident ::= alpha (alpha | digit)”
num ::= digit*

ident =2 IDENT s
num =2 NUM s
“while” -> WHILE
“+” -> PLUS...

Lexing examples

°WwW
°WwW

°WwW

nile (i < 5)
nile i < 5)

nole (i< 5

WHILE; LPAREN; IDENT “i”; LT, NUM 5; RPAREN
WHILE; IDENT “i”; LT; NUM 5; RPAREN
SENT “whole”; LPAREN; IDENT i; LT, NUM 5; RPAREN

Might be syntax errors

during parsing. Not errors
during lexing.

CS 443 - Fall 2024 - Lecture 2

Regex matching can be done by finite state
machines (FSMs)

* Machine can be in one of a finite number of states

* Changes state by reading input

Paused

‘Release accelerator
(Flashing) }

\-

~ Press accelerator

ne

Brake

Inactive
(Gray)

Common state machine:
DFA (Deterministic Finite Automaton)

Over an alphabet X

Formal definition: (Q, o, g, F) — Total and deterministic —

* Q: A set of states exactly one transition for
* O0: Transition function (Qx X -> Q) — every state, symbol

* g, : Start state

* F: Set of accepting states

Common state machine:
DFA (Deterministic Finite Automaton)

*({0,1,2,e},.,0,2)

\

Accepts exactly “a”

Start state
Accepting state

DFA for “at least one a”

DFA for “exactly two as”
(Just count the number until we get to 3)

DFA for “beginning and ending with b”

Can convert regexes to DFAs-but we don’t do
it directly

 Full algorithm in Appel, PDB. General idea:

NFA

(Nondeterministic

NFA “widgets” for A ST E el Use one DFA state to

represent sets of NFA
states we might be in

each RE construction.

" Allow multiple
Connect w/ transitions P

transitions on each
symbol, empty
transitions

CS 443 - Fall 2024 - Lecture 2

15

NFASs

Silent transitions

Formal definition: (Q, 6, q,, F) and deterministic —
* Q: A set of states exactly on sition for
* 0: Transition function (QAx X U {€}-> Q) —< every state, symbol

Zero or more transitions

* g, : Start state
* F: Set of accepting states

Accept if there’s a way to reach a final state (“try all paths at once”)

CS 443 - Fall 2024 - Lecture 2 16

NFA for “beginning and ending with b”

No transition for
a: If we see an g,
immediately reject

CS 443 - Fall 2024 - Lecture 2

17

NFA for “beginning or ending with b”

Convert Regexes to NFAs with “widgets”

o O O

e |
R;R, —»[NFA for R, H NFA for RZJ
R |

R 2 & NFA for R,
‘{Kr p
NFA for R,

Convert NFAs to DFAs with “subset
construction”

* DFA states = sets of NFA states
* Final DFA states = contain >= 1 final NFA state

CS 443 - Fall 2024 - Lecture 2

20

DFAs/regexes can’t do everything

* Make a Regex/DFA for “open and close parens match”

* Impossible!
* Proof sketch: Need different states for (, ((, (((, ...
* “DFAs can’t count”

	Slide 1: CS443: Compiler Construction
	Slide 2: Announcements
	Slide 3: Compilers translate code in phases
	Slide 4: Terminology
	Slide 5: Tokens are specified using a regular grammar
	Slide 6: Regex examples (Alphabet: a, b)
	Slide 7: Tokens are specified using a regular grammar
	Slide 8: Lexing examples
	Slide 9: Regex matching can be done by finite state machines (FSMs)
	Slide 10: Common state machine: DFA (Deterministic Finite Automaton)
	Slide 11: Common state machine: DFA (Deterministic Finite Automaton)
	Slide 12: DFA for “at least one a”
	Slide 13: DFA for “exactly two as” (Just count the number until we get to 3)
	Slide 14: DFA for “beginning and ending with b”
	Slide 15: Can convert regexes to DFAs-but we don’t do it directly
	Slide 16: NFAs
	Slide 17: NFA for “beginning and ending with b”
	Slide 18: NFA for “beginning or ending with b”
	Slide 19: Convert Regexes to NFAs with “widgets”
	Slide 20: Convert NFAs to DFAs with “subset construction”
	Slide 21: DFAs/regexes can’t do everything

