CS443: Compiler
Construction

Lecture 21: Risc-V ISA
Stefan Muller

Based on material by Yan Garcia and Rujia Wang

You are here

First-order First-order
Higher-order First-order Typed Untyped
Typed Typed Structured Data No Structured Data
Structured Data Structured Data Flat Expressions Flat Expressions
Nested Expressions Nested Expressions Unlimited Variables 32 Hardware Registers
Unlimited Variables Unlimited Variables

)

Lexing/Parsing

Optimization

€
©
Q
=
p=

Closure Conv./Lifting IR Generation Registe Instruction Selection

CS 443 - Fall 2024 - Lectur®

An ISA is the set of instructions a computer
can execute

* The job of a CPU

* Fetch an instruction from memory

* Decode

* Execute

* Write results to memory add x3, x2, x0

* Repeat (basically) forever
Assembler

01110001110110

CS 443 - Fall 2024 - Lecture 21

There are many different ISAs with rich
histories

We can
make our
own chips!

We can
make our
own chips!

By Mike Deerkoski - https://www.flickr.com/photos/deerkoski/7178643521/in/photostream

https://www.flickr.com/people/mylerdude/ 2020 - |\/|1/|\/|2 (ARM)
Apple 1991 PowerPC

Intel

CS 443 - Fall 2024 - Lecture 21

There are many different ISAs with rich
histories

Intel

X86 X86-64

Hey, no stealing
our architecture!

x86 AMD64
AMD

1990 2000

RISC (Reduced Instruction Set Computer)
idea: simpler, faster hardware

e Earlier philosophy (“CISC”):
Want to do something new? Add an instruction!

e RISC: Cocke, Hennessy, Patterson (1980s)

RISC-V: A simple RISC Architecture,
good for teaching

* Originally developed in 2010 at UC Berkeley for teaching
* Open-source

Assembly Language: Human-readable
machine code

* Assembly language is tied to ISA

* (Roughly) 1-to-1 correspondence with ISA instructions

* (Some assembly languages offer convenient mnemonics that expand to
multiple instructions)

An instruction is an opcode and operands

(registers)
add x3

L'_H.'f X2, X0

opcode dest operands

add rd, rsl, rs2

* Operands can only be registers and sometimes constants
(“immediates”)

* Registers: Limited number of single-word storage locations in
hardware

Registers in RISC-V

 (Also some floating point registers

we won'’t talk about)

Register |ABI Name
%0 Zero
x1 ra
X2 sSp
%3 gp
x4 tp

X517 t0-2
%3 s0/fp
x9 51

x10-11 al-1

x12-17 22—

x18-27 s2-11

x28-31 t3-t6

CS 443 - Fall 2024 - Lecture 21

10

Before we dive into RISC-V: A quick recap on
data representation

e Bit (binary digit): 0 or 1
* “Nibble”: 4 bits (1 hex digit 0x0-0xF)
e Byte: 8 bits

* 2 hex digits: 0x00-OxFF

* Word: “Natural” size of data operated on by a computer
e 32-bit ISA: 32 bits (4 bytes)
* Width of registers

Integers in binary/hex

1 0 1 %]

x23 + x22 + x21 + X 29
2 2 10
10 a 1010
16 10 10000
32 20 100000

“Most significant” “Least significant”

Review: Endianness

 Store data one byte at a time
* Order of bits in a byte doesn’t change!

* So do we store the most significant byte at the lowest memory
address (the way we’d write it left-to-right) or the highest?
* Lowest: “Big-endian” (e.g., IBM System/360)
e Highest: “Little-endian” (e.g., x86, RISC-V)

Little-endian

 Oxdeadbeef

ef

be

ad

de

CS 443 - Fall 2024 - Lecture 21

14

Two’s complement signed integers

* A1lin MSB (Most significant bit) subtracts 23! (instead of adding it)
* 100000.... =-231

e 011111.... = 2311 (highest positive # representable)
e 111111....=-1

e Can just add two’s complement #s without casing on sign!

Two’'s complement means two ways to extend
integers to the left

1010101

-

e |If signed int: want to sign-extend (extend with MSB)
* LLVM: sext
e 101 as 3-bitint=-3=11101 as 5-bit int

* If unsigned: want to zero-extend (extend with Os)

CS 443 - Fall 2024 - Lecture 21 16

Assembly operands, registers are untyped

* Value is whatever we interpret it as — (signed/unsigned)
int/char/bool, etc.

x1 (0/1{1/0{0{0/0{0|0/0{0|0|0{0|0|0|0O|0O|0[|0O|0O|0O|0O|0O|0O|0O|0O|0|O0

x2 (0/0{1/0{0|0/0{0|0|0({0|0|0|0|0O|0|0O|0O|0|0O|0O|0O|0O|0O|0O|0O|0O|0|O0

x3 [1/0{0/0{0|0/0{0|0|0({0|0|0|0|0O|0|0O|0O|0|0O|0O|0O|0O|0O|0O|0O|0O|0|O0

add x3, x2, x1
Overflow:
char: Yes. unsigned int: No. signed int: Yes.

Still want types? Never fear

TALx86: A Realistic Typed Assembly Language*

Greg Morrisett Karl Crary’ Neal Glew Dan Grossman Richard Samuels
Frederick Smith David Walker Stephanie Weirich Steve Zdancewic
Cornell University

S

CS 443 - Fall 2024 - Lecture 21

18

Registers are inside the processor

Processor Memor
Enable? y < Input
Control Read/Writg_
¢ T Data
Datapath
5E Address
| — — | EBEes—
—_————— Write
| \':".':!2'.‘:! =] Data
L
-
Program Output
Data g

L J \ J
| I
Processor-Memory Interface 1/O-Memory Interfaces

Q: Why not make a bigger processor with more registers?

CS 443 - Fall 2024 - Lecture 21

RISC-V Instructions are 32 bits

* 6 types of instructions:

31 30 25 24 21 20 19 15 14 12 11 3 7 6 0
funct7 rs2 rsl funct3 rd opcode
imm|11:0] rsl funct3 rd opcode

imm|[11:5] rs2 rsl funct3 imm|4:0] opcode
imm|[12| | imm|10:5] rs2 rsl funct3 | imm|4:1] | imm|11] | opcode
imm|31:12)] rd opcode

imm [20] imm|10:1] imm|11] imm [19:12] rd opcode

CS 443 - Fall 2024 - Lecture 21

R-type
[-type

S-type
B-type
U-type
J-type

20

R-type instruction: Destination, two register

operands

Risc-V LLVM C

add x1, x2, x3 %x1 = add i32 %x2 %x3 x1=x2+x3
sub x3, x4, x5 %x3 =sub i32 %x4 %x5 X3 = x4 — x5

Also: xor, or, and, mul, div

divu (div unsigned)

sl (shift left logical)

srl (shift right logical) — fill left with Os

sra (shift right arithmetic) — fill left with sign bit
slt (set rd to 1 iff rs1 < rs2)

X0 is always O, writes are ignored

* Why would you want to read from x0?
* mvrd, rs =add rd rs xO

 Why would you want to write to x07?
* nop = add x0 x0 x0

e (There are other ways to write a no-op instruction, but this is the
conventional one)

I-type instructions: Destination, register,
Immediate

Risc-V LLVM C
addi x1, x2, n %x1 =add i32 %x2 n X1=x2+n
subi x3, x4, n %x3 =subi32 %x4 n X3=x4—-n

Also: xori, ori, andi, (NO muli, divi)

slti (set if less-than)

slli (shift left logical)

srli (shift right logical) — fill left with Os

srai (shift right arithmetic) — fill left with sign bit

Example

1 <- 2 <-
%y X X X y

mul 132 %y 2

e add x1, x2, x2
eslli x1, x2, 1

e addi x1, x0, 2
mul x1, x2, x1

Remember: You only get 12 bits for

immediate (not very big)

* In RISC-V immediates are "sigh extended"
®* So the upper bits are the same as the largest bit

®* Remember sign extended 2’s complement..

* So for a 12b immediate...
® Bits 31:12 get the same value as Bit 11

31 30 25 24 21 20 19 15 14 12 11 8 6 0
funct7 rs2 rsl funct3 rd opcode
imm|11:0] rsl funct3 rd opcode

R-type

I-type

If you need big immediates, need 2 insts

Risc-V C
lui x1, n Xx1=n<<12(x1=n* 4096)

%X = add 132 %y, 5000

x1 <- X X2 <-y

5000 = 1 0011 1000 16000

lui x1, 1
addi x1, x1, 904
add x1, x1, x2

Control flow in RISC-V: similar to LLVM, but
less structured

Assembly: After assembling/linkning:

loopforever: add x0, x0, x0
add x0, x0, x0© j -4 Offset: Position
j loopforever independent

CS 443 - Fall 2024 - Lecture 21 27

j isn’t actually an instruction

* It’s a “pseudoinstruction” that gets expanded into other instructions
by the assembler (like mv, nop)

B-type instructions (Conditional branches):

2 registers and a label/offset
Risc-V LLVM C
beq x1, x2, addr %x3 = icmp eq i32 %x1 %x2 if (x1 == x2) goto addr

br il %x3, label addr, ??7?
Also: bne, blt, bge, (bltu, bgeu)
NO ble, bgt

Example

%x1l = icmp 1t 132 7%x2, %x3
br 11 %x1, label ltrue, label 1false

blt x2, x3, ltrue
j lfalse Unlike LLVM, control “falls

through” to next instruction

slt x1, x2, x3

bne x1, x0, ltrue
j lfalse

CS 443 - Fall 2024 - Lecture 21

30

Example

%x1 = 1cmp le 132 %x2, %X3
br 11 %x1, label ltrue, label 1lfalse

bge x3, x2, ltrue
j lfalse

Example

Assuming assignments below, compile if block

f— x10 g—x11 h- x12
| - x13 | — x14

if (1 == j) bne x13,x14,done
f =g + h; add x10,x11,x12
done:

Unconditional jump instructions: jal, jalr

*jal rd, imm
e Jump to label (or by offset)
e Set rd = PC + 4 (next instruction after jal)

* jalr rd, rs, imm
e Jump to address inrs +imm
e Setrd = PC + 4 (next instruction after jal)

*j imm = jal x0, imm

Loading from and storing to memory

Processor Enable? L E IO < Input
Read/Write
Control >
v A Data ‘\
Datapath
| PC | Address =:%: Much larger place
\Write Data = 2 To hold values, but
———Darfctere—— Store to me%O% slower than registers!
“TRead Data =
Load from Program | Output
memory
Fast but limited place ! —
To hold values Processor-Memory Interface I/0-Memory Interfaces
3
1

CS 443 - Fall 2024 - Lecture 21 34

Memory is addressed in bytes

 (But access memory a word at a time, so in practice, will only access
memory at multiples of 4 bytes)

e Generally: data >= 1 word must be aligned to addresses that are
multiples of 4

lw loads from memory to register

lw rd, imm(rs)

Load word at rs + imm into rd

lw loads from memory to register

C code
int A[100]; : .
g = h + A 3]; Register, register,
immediate: lw is an

|-type instruction

Using Load Word (1w) in RISC-V:
 lw x10,12(x13) # Reg x10 gets A[3]
add x11,x12,x10 # g = h + A[3]

 Assume: x13—base register (pointer to A[0]) Note: 12— offset

in bytes
* Offset must be a constant known at assembly time

CS 443 - Fall 2024 - Lecture 21

37

sw transfers from register to memory

C RISC-V
int A[100] lw x10, 12(x13)
A[10] = h + A[3] add x10, x12, x10

sw x10, 40(x13)

Note:
e x13 — base register (pointer)

e 12, 40 — offsets in bytes
e x13 +12 and x13 + 40 must be multiples of 4 to maintain alignment

Example

addi x11,x0,0xfeed
addi x12,x0,0xbeef
addi x6,x5,4
sw x11,0(x5)
sw x12,4(x5)
lw x12,0(x6)

e What’s the value in x12°7 Answer: Oxbeef

CS 443 - Fall 2024 - Lecture 21

Example

addi x11,x0,0xfeed
addi x12,x0,0xbeef
addi x6,x5,1
sw x11,0(x5)
sw x12,4(x5)
lw x12,0(x6)

e What’s the value in x12°7 Answer: Undefined

CS 443 - Fall 2024 - Lecture 21

Memory layout in RISC-V

sp = bfff £ffOpay

Stack

Dynamic data

Static data

1000 0000pex
Text

pc = 0001 0000peyx

Reserved
0

CS 443 - Fall 2024 - Lecture 21

(heap)

41

A stack frame is where we store spilled locals,
plus anything alloca’'d

fp (x8) Spilled 1
“Frame pointer” pried var
P Spilled var 2
Q: Do we need the frame pointer
if there’s no dynamic stack
allocation? spilled var N
Dynamically allocated space

Sp (x2) —s
“Stack pointer” 1

CS 443 - Fall 2024 - Lecture 21

42

	Slide 1: CS443: Compiler Construction
	Slide 2: You are here
	Slide 3: An ISA is the set of instructions a computer can execute
	Slide 4: There are many different ISAs with rich histories
	Slide 5: There are many different ISAs with rich histories
	Slide 6: RISC (Reduced Instruction Set Computer) idea: simpler, faster hardware
	Slide 7: RISC-V: A simple RISC Architecture, good for teaching
	Slide 8: Assembly Language: Human-readable machine code
	Slide 9: An instruction is an opcode and operands (registers)
	Slide 10: Registers in RISC-V
	Slide 11: Before we dive into RISC-V: A quick recap on data representation
	Slide 12: Integers in binary/hex
	Slide 13: Review: Endianness
	Slide 14: Little-endian
	Slide 15: Two’s complement signed integers
	Slide 16: Two’s complement means two ways to extend integers to the left
	Slide 17: Assembly operands, registers are untyped
	Slide 18: Still want types? Never fear
	Slide 19: Registers are inside the processor
	Slide 20: RISC-V Instructions are 32 bits
	Slide 21: R-type instruction: Destination, two register operands
	Slide 22: x0 is always 0, writes are ignored
	Slide 23: I-type instructions: Destination, register, immediate
	Slide 24: Example
	Slide 25: Remember: You only get 12 bits for immediate (not very big)
	Slide 26: If you need big immediates, need 2 insts
	Slide 27: Control flow in RISC-V: similar to LLVM, but less structured
	Slide 28: j isn’t actually an instruction
	Slide 29: B-type instructions (Conditional branches): 2 registers and a label/offset
	Slide 30: Example
	Slide 31: Example
	Slide 32: Example
	Slide 33: Unconditional jump instructions: jal, jalr
	Slide 34: Loading from and storing to memory
	Slide 35: Memory is addressed in bytes
	Slide 36: lw loads from memory to register
	Slide 37: lw loads from memory to register
	Slide 38: sw transfers from register to memory
	Slide 39: Example
	Slide 40: Example
	Slide 41: Memory layout in RISC-V
	Slide 42: A stack frame is where we store spilled locals, plus anything alloca’d

