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Construction

Lecture 21: Risc-V ISA
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An ISA is the set of instructions a computer
can execute

* The job of a CPU

* Fetch an instruction from memory

* Decode

* Execute

* Write results to memory add x3, x2, x0

* Repeat (basically) forever
Assembler

01110001110110
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There are many different ISAs with rich
histories

We can
make our
own chips!

We can
make our
own chips!

By Mike Deerkoski - https://www.flickr.com/photos/deerkoski/7178643521/in/photostream

https://www.flickr.com/people/mylerdude/ 2020 - |\/|1/|\/|2 (ARM)
Apple 1991 PowerPC

Intel
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There are many different ISAs with rich
histories

Intel

X86 X86-64

Hey, no stealing
our architecture!

x86 AMD64
AMD

1990 2000



RISC (Reduced Instruction Set Computer)
idea: simpler, faster hardware

e Earlier philosophy (“CISC”):
Want to do something new? Add an instruction!

e RISC: Cocke, Hennessy, Patterson (1980s)



RISC-V: A simple RISC Architecture,
good for teaching

* Originally developed in 2010 at UC Berkeley for teaching
* Open-source



Assembly Language: Human-readable
machine code

* Assembly language is tied to ISA

* (Roughly) 1-to-1 correspondence with ISA instructions

* (Some assembly languages offer convenient mnemonics that expand to
multiple instructions)



An instruction is an opcode and operands

(registers)
add x3

L'_H.'f X2, X0

opcode dest operands

add rd, rsl, rs2

* Operands can only be registers and sometimes constants
(“immediates”)

* Registers: Limited number of single-word storage locations in
hardware



Registers in RISC-V

 (Also some floating point registers

we won'’t talk about)

Register |ABI Name
%0 Zero
x1 ra
X2 sSp
%3 gp
x4 tp

X517 t0-2
%3 s0/fp
x9 51

x10-11 al-1

x12-17 22—

x18-27 s2-11

x28-31 t3-t6
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Before we dive into RISC-V: A quick recap on
data representation

e Bit (binary digit): 0 or 1
* “Nibble”: 4 bits (1 hex digit 0x0-0xF)
e Byte: 8 bits

* 2 hex digits: 0x00-OxFF

* Word: “Natural” size of data operated on by a computer
e 32-bit ISA: 32 bits (4 bytes)
* Width of registers



Integers in binary/hex

1 0 1 %]

x23 + x22 + x21 + X 29
2 2 10
10 a 1010
16 10 10000
32 20 100000

“Most significant” “Least significant”



Review: Endianness

 Store data one byte at a time
* Order of bits in a byte doesn’t change!

* So do we store the most significant byte at the lowest memory
address (the way we’d write it left-to-right) or the highest?
* Lowest: “Big-endian” (e.g., IBM System/360)
e Highest: “Little-endian” (e.g., x86, RISC-V)



Little-endian

 Oxdeadbeef

ef

be

ad

de
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Two’s complement signed integers

* A1lin MSB (Most significant bit) subtracts 23! (instead of adding it)
* 100000.... =-231

e 011111.... = 2311 (highest positive # representable)
e 111111....=-1

e Can just add two’s complement #s without casing on sign!



Two’'s complement means two ways to extend
integers to the left

1010101

-

e |If signed int: want to sign-extend (extend with MSB)
* LLVM: sext
e 101 as 3-bitint=-3=11101 as 5-bit int

* If unsigned: want to zero-extend (extend with Os)
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Assembly operands, registers are untyped

* Value is whatever we interpret it as — (signed/unsigned)
int/char/bool, etc.

x1 (0/1{1/0{0{0/0{0|0/0{0|0|0{0|0|0|0O|0O|0[|0O|0O|0O|0O|0O|0O|0O|0O|0|O0

x2 (0/0{1/0{0|0/0{0|0|0({0|0|0|0|0O|0|0O|0O|0|0O|0O|0O|0O|0O|0O|0O|0O|0|O0

x3 [1/0{0/0{0|0/0{0|0|0({0|0|0|0|0O|0|0O|0O|0|0O|0O|0O|0O|0O|0O|0O|0O|0|O0

add x3, x2, x1
Overflow:
char: Yes. unsigned int: No. signed int: Yes.



Still want types? Never fear

TALx86: A Realistic Typed Assembly Language*

Greg Morrisett Karl Crary’ Neal Glew Dan Grossman  Richard Samuels
Frederick Smith David Walker Stephanie Weirich Steve Zdancewic
Cornell University

S
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Registers are inside the processor

Processor Memor
Enable? y < Input
Control Read/Writg_
¢ T Data
Datapath
5E Address
| — — | EBEes—
—_————— Write
| \':".':!2'.‘:! = ] Data
L
-
Program Output
Data g

L J \ J
| I
Processor-Memory Interface  1/O-Memory Interfaces

Q: Why not make a bigger processor with more registers?
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RISC-V Instructions are 32 bits

* 6 types of instructions:

31 30 25 24 21 20 19 15 14 12 11 3 7 6 0
funct7 rs2 rsl funct3 rd opcode
imm|11:0] rsl funct3 rd opcode

imm|[11:5] rs2 rsl funct3 imm|4:0] opcode
imm|[12| | imm|10:5] rs2 rsl funct3 | imm|4:1] | imm|11] | opcode
imm|31:12)] rd opcode

imm [20] imm|10:1] imm|11] imm [19:12] rd opcode
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R-type instruction: Destination, two register

operands

Risc-V LLVM C

add x1, x2, x3 %x1 = add i32 %x2 %x3 x1=x2+x3
sub x3, x4, x5 %x3 =sub i32 %x4 %x5 X3 = x4 — x5

Also: xor, or, and, mul, div

divu (div unsigned)

sl (shift left logical)

srl (shift right logical) — fill left with Os

sra (shift right arithmetic) — fill left with sign bit
slt (set rd to 1 iff rs1 < rs2)



X0 is always O, writes are ignored

* Why would you want to read from x0?
* mvrd, rs =add rd rs xO

 Why would you want to write to x07?
* nop = add x0 x0 x0

e (There are other ways to write a no-op instruction, but this is the
conventional one)



I-type instructions: Destination, register,
Immediate

Risc-V LLVM C
addi x1, x2, n %x1 =add i32 %x2 n X1=x2+n
subi x3, x4, n %x3 =subi32 %x4 n X3=x4—-n

Also: xori, ori, andi, (NO muli, divi)

slti (set if less-than)

slli (shift left logical)

srli (shift right logical) — fill left with Os

srai (shift right arithmetic) — fill left with sign bit



Example

1 <- 2 <-
%y X X X y

mul 132 %y 2

e add x1, x2, x2
eslli x1, x2, 1

e addi x1, x0, 2
mul x1, x2, x1



Remember: You only get 12 bits for

immediate (not very big)

* In RISC-V immediates are "sigh extended"
®* So the upper bits are the same as the largest bit

®* Remember sign extended 2’s complement..

* So for a 12b immediate...
® Bits 31:12 get the same value as Bit 11

31 30 25 24 21 20 19 15 14 12 11 8 6 0
funct7 rs2 rsl funct3 rd opcode
imm|11:0] rsl funct3 rd opcode

R-type

I-type



If you need big immediates, need 2 insts

Risc-V C
lui x1, n Xx1=n<<12(x1=n* 4096)

%X = add 132 %y, 5000

x1 <- X X2 <-y

5000 = 1 0011 1000 16000

lui x1, 1
addi x1, x1, 904
add x1, x1, x2



Control flow in RISC-V: similar to LLVM, but
less structured

Assembly: After assembling/linkning:

loopforever: add x0, x0, x0
add x0, x0, x0© j -4 Offset: Position
j loopforever independent

CS 443 - Fall 2024 - Lecture 21 27



j isn’t actually an instruction

* It’s a “pseudoinstruction” that gets expanded into other instructions
by the assembler (like mv, nop)



B-type instructions (Conditional branches):

2 registers and a label/offset
Risc-V LLVM C
beq x1, x2, addr %x3 = icmp eq i32 %x1 %x2 if (x1 == x2) goto addr

br il %x3, label addr, ??7?
Also: bne, blt, bge, (bltu, bgeu)
NO ble, bgt



Example

%x1l = icmp 1t 132 7%x2, %x3
br 11 %x1, label ltrue, label 1false

blt x2, x3, ltrue
j lfalse Unlike LLVM, control “falls

through” to next instruction

slt x1, x2, x3

bne x1, x0, ltrue
j lfalse
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Example

%x1 = 1cmp le 132 %x2, %X3
br 11 %x1, label ltrue, label 1lfalse

bge x3, x2, ltrue
j lfalse



Example

Assuming assignments below, compile if block

f— x10 g—x11 h- x12
| - x13 | — x14

if (1 == j) bne x13,x14,done
f =g + h; add x10,x11,x12
done:



Unconditional jump instructions: jal, jalr

*jal rd, imm
e Jump to label (or by offset)
e Set rd = PC + 4 (next instruction after jal)

* jalr rd, rs, imm
e Jump to address inrs +imm
e Setrd = PC + 4 (next instruction after jal)

*j imm = jal x0, imm



Loading from and storing to memory

Processor Enable? L E IO < Input
Read/Write
Control >
v A Data ‘\
Datapath
| PC | Address =:%: Much larger place
\Write Data = 2 To hold values, but
———Darfctere—— Store to me%O% slower than registers!
“TRead Data =
Load from Program | Output
memory
Fast but limited place ! —
To hold values Processor-Memory Interface I/0-Memory Interfaces
3
1
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Memory is addressed in bytes

 (But access memory a word at a time, so in practice, will only access
memory at multiples of 4 bytes)

e Generally: data >= 1 word must be aligned to addresses that are
multiples of 4



lw loads from memory to register

lw rd, imm(rs)

Load word at rs + imm into rd



lw loads from memory to register

C code
int A[100]; : .
g = h + A 3]; Register, register,
immediate: lw is an

|-type instruction

Using Load Word (1w) in RISC-V:
 lw x10,12(x13) # Reg x10 gets A[3]
add x11,x12,x10 # g = h + A[3]

 Assume: x13—base register (pointer to A[0]) Note: 12— offset

in bytes
* Offset must be a constant known at assembly time
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sw transfers from register to memory

C RISC-V
int A[100] lw x10, 12(x13)
A[10] = h + A[3] add x10, x12, x10

sw x10, 40(x13)

Note:
e x13 — base register (pointer)

e 12, 40 — offsets in bytes
e x13 +12 and x13 + 40 must be multiples of 4 to maintain alignment



Example

addi x11,x0,0xfeed
addi x12,x0,0xbeef
addi x6,x5,4
sw x11,0(x5)
sw x12,4(x5)
lw x12,0(x6)

e What’s the value in x12°7 Answer: Oxbeef
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Example

addi x11,x0,0xfeed
addi x12,x0,0xbeef
addi x6,x5,1
sw x11,0(x5)
sw x12,4(x5)
lw x12,0(x6)

e What’s the value in x12°7 Answer: Undefined
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Memory layout in RISC-V

sp = bfff £ffOpay

Stack

Dynamic data

Static data

1000 0000pex
Text

pc = 0001 0000peyx

Reserved
0
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A stack frame is where we store spilled locals,
plus anything alloca’'d

fp (x8) Spilled 1
“Frame pointer” pried var
P Spilled var 2
Q: Do we need the frame pointer
if there’s no dynamic stack
allocation? spilled var N
Dynamically allocated space

Sp (x2) —s
“Stack pointer” 1
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