CS443: Compiler
Construction

Lecture 24: Memory Management & Garbage Collection
Stefan Muller



Memory layout

Registers

struct pair { public class Pair {
int Xx; public int x;
int y; public int y;
} public Pair(int a, int b) {
pair ptr = new(pair); X = a;
ptr.x = 5; y = b;
ptr.y = 10; }
}
Pair ptr = new Pair(5, 10);

*
let ptr = (5, 10)

| s ol

Heap
*In Java, there would also be a tag
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Objects can be nested
Pt Jp2 Jp3 | | | | |

(1, 2)
(3, 4)

(p1, p2)

0
N
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Memory management answers two questions

* How do we allocate memory?

e What do we do with it when we’re done?



MM breaks down into two basic strategies

* Manual — programmer says when to allocate (malloc/new) and free
(free/drop)
* Good control
* Might forget to free/free twice/use after free

e Automatic — free memory automatically when no longer needed
* (“Garbage collection”)
 Some runtime overhead



What about Rust?

* Still manual, the compiler just inserts calls to drop when variables go
out of scope (definitely can’t be used any more)

* Overly conservative, but prevents errors with free.
* Manual doesn’t have to mean awful!



Manual Memory Management
Let - pair a

pair(1, 2);

pair a = pair(x, y); pair b = pair(3, 4);
mean pair c = pair(5, 6);
pair a = pair d = pair(a, b);
malloc(sizeof(pair)); d.snd = c;

a.fst = x; free(b);

a.snd = y; pair e = pair(7, 8);
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Manual Memory Management

Let pair a = pair(1, 2);
pair a = pair(x, y); - pair b = pair(3, 4);
mean pair c¢ = pair(5, 6);
pair a = pair d = pair(a, b);
malloc(sizeof(pair)); d.snd = c;

a.fst = x; free(b);

a.snd = y; pair e = pair(7, 8);
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Manual Memory Management

Let pair a = pair(1, 2);
pair a = pair(x, y); pair b = pair(3, 4);
mean - pair c¢ = pair(5, 6);
pair a = pair d = pair(a, b);
malloc(sizeof(pair)); d.snd = c;

a.fst = x; free(b);

a.snd = y; pair e = pair(7, 8);

|
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Manual Memory Management

Let pair a = pair(1, 2);
pair a = pair(x, y); pair b = pair(3, 4);
mean pair c¢ = pair(5, 6);
pair a = - pair d = pair(a, b);
malloc(sizeof(pair)); d.snd = c;

a.fst = x; free(b);

a.snd = y; pair e = pair(7, 8);

RN
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Manual Memory Management

Let pair a = pair(1, 2);
pair a = pair(x, y); pair b = pair(3, 4);
mean pair c = pair(5, 6);
pair a = pair d = pair(a, b);
malloc(sizeof(pair)); » d.snd = c;

a.fst = x; free(b);

a.snd = y; pair e = pair(7, 8);

N T
e ——
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Manual Memory Management

pair(1, 2);
pair(3, 4);
pair(5, 6);
pair(a, b);

Let pair a =
pair a = pair(x, y); pa%r‘ b =
mean pair cC =
pair a = pair d =
malloc(sizeof(pair)); d.snd = c;
a.fst = x; - free(b);
a.snd = vy; pair e =

pair(7, 8);

J\\\
a

CS 443 - Fall 2024 - Lecture 24

12



Ma

b still valid,
still points
to same loc,

but can
reuse
memory

nual Memory Management

Let pair a = pair(1, 2);
pair a = pair(x, y); pair b = pair(3, 4);
mean pair ¢ = pair(5, 6);
pair a = pair d = pair‘(a, b);
malloc(sizeof(pair)); d.snd =

a.fst = x; fr‘ee(b);

a.snd = vy;

- pair e = pair(7, 8);
a b Jc Jd |

N
L i
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Manual Memory Management

Let pair a = pair(1, 2);
pair a = pair(x, y); Need to reuse pair b = pa}r‘(3, 4);
mean that space— pair c = pair(5, 6);
pair a = fragmentation pair d = pair(a, b);
malloc(sizeof(pair)); d.snd = c;

a.fst = x; free(b);

a.snd = y; pair e = pair(7, 8);

=
a b Jc Jd Je | | | |

v

!__ 6 }
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Manual pros and cons

* Pros
» Space-efficient
* freeis cheap
* Lots of control

* Cons
 malloc is expensive (and hard to implement)!
* Lots of control



Functional languages allocate a ot

_list  ctemp52 = new(_list);

__ctempb52.1list tl =  env;

__ctempb52.1ist hd = ((int) (__ _list) ctempb5l.list hd);

__env =  ctempb52;

__list  ctempb53 = new(_ list);

__ctempb53.1list tl =  env;

__ctempb53.1list hd = ((int) ctempb5l.list tl);

__env =  ctempb53;

__clos  ctempb4 = ((_clos) lookup(4,  env));

__clos _ ctempb5 =
((__clos(*) (int, _ 1list)) ctempS4.clos fun) (((int) lookup(l,  env)),
__ctemp54.clos_env);

__clos _ ctempb6 =  ctempb55;

__pair _ ctempb57 =
((__pair(*)(__list,  list)) ctemp56.clos_fun) (((__list) lookup (O,
__env)), _ ctempb6.clos _env);

__pair _ ctempb58 =  ctempb57;

__list  ctempb59 = new(_ list);

__ctempb59.l1list tl =  env;

__ctemp59.1ist hd = ((int) ctemp58.pair fst);

__env = _ ctempb59;

__list  ctemp60 = new(_ list);

__ctemp60.list tl =  env;

__ctemp60.list hd = ((int)_ ctemp58.pair snd);

And also can you imagine having to free everything manually?

CS 443 - Fall 2024 - Lecture 24



Reachability and garbage

* Root set: Anything immediately reachable (registers, stack)
* e.g., local variables, arguments

* Reachable (“live”): any objects (transitively) pointed to by root set
* Garbage (“dead”): any allocated objects not reachable



Objects not reachable from roots are

dead/garbage
pt ez | | | | | | |

N 0 8 0 0 ) N O
)
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Knowing what points to what isn’t as easy as
it sounds

*InC:
int *p = (int *)Oxdeadbeef;

k —
p = 5 ) Garbage collection won’t
work well in C
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Knowing what points to what isn’t as easy as
it sounds

In ML
let a = (None, 0)
let b = (Some a, 256)

] Nome [0 [Some 256 256 | | | |
~ NJ N7 Z
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OCaml’s clever hack: use the LSB to indicate
Integer or pointer

S N S X N S O E R

LSB of a ptr is 0 anyway

(1, 2, x + 1)
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OCaml’s clever hack: use the LSB to indicate
Integer or pointer

S N S X N S O E R

LSB of a ptr is 0 anyway

(1, 2, x + 1)

12d43:
12d4a:
12d51:
12d52:
12d56:
12d5a:
12d5e:

48
48
(5]
48
48
48
c3

C/ 00 03 00 00 @0
c/ 40 08 O5 00 00

83 c3 02

89 58 160
83 c4 08
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mov(
mov(

add
mov
add
retq

$0x3, (%rax)
$0x5,0x8(%rax)

$0x2,%rbx

%rbx,0x10(%rax)
$0x8,%rsp
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OCaml’s clever hack: use the LSB to indicate
Integer or pointer

S N S X N S O E R

LSB of a ptr is 0 anyway

(1, 2, x + 1)

12d43:
12d4a:
12d51:
12d52:
12d56:
12d5a:
12d5e:

48
48
(5]
48
48
48
c3

3=1<<1+1

C/ 00 03 00 00 @0
c/ 40 08 O5 00 00

83 c3 02

89 58 160
83 c4 08
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mov(
mov(

add
mov
add
retq

$0x3, (%rax)
$0x5,0x8(%rax)

$0x2,%rbx

%rbx,0x10(%rax)
$0x8,%rsp
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OCaml’s clever hack: use the LSB to indicate
Integer or pointer

S N S X N S O E R

LSB of a ptr is 0 anyway

(1, 2, x + 1)

12d43:
12d4a:
12d51:
12d52:
12d56:
12d5a:
12d5e:

48
48
(5]
48
48
48
c3

5=2<<1+1

C/ 00 03 00 00 @0
c/ 40 08 O5 00 00

83 c3 02

89 58 160
83 c4 08
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mov(
mov(

add
mov
add
retq

$0x3, (%rax)
$0x5,0x8(%rax)

$0x2,%rbx

%rbx,0x10(%rax)
$0x8,%rsp
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OCaml’s clever hack: use the LSB to indicate
Integer or pointer

S N S X N S O E R

LSB of a ptr is 0 anyway

(1, 2, x + 1)

12d43:
12d4a:
12d51:
12d52:
12d56:
12d5a:
12d5e:

(x<<1+1)+(1<<1)=(x+1)<<1+1

48
48
(5]
48
48
48
c3

C/ 00 03 00 00 @0
c/ 40 08 O5 00 00

83 c3 02

89 58 160
83 c4 08

CS 443 - Fall 2024 - Lecture 24

mov(
mov(

add
mov
add
retq

$0x3, (%rax)
$0x5,0x8(%rax)

$0x2,%rbx

%rbx,0x10(%rax)
$0x8,%rsp
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GC Strategy #1: Reference counting

* |dea: keep track of how many references every object has

let p1 = (1, 2)
let p2 = (3, 4)
let p3 = (p1, p2)
f(p3)

0 0 0
-----w-------
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Reference counting pros

* Simple, intuitive

* Garbage collected immediately



Reference counting cons

* Cyclic data structures a = new A(); -
b = new B();
A.b = b; m
B.a = a;

* Updating counts can be expensive

CS 443 - Fall 2024 - Lecture 24

Vo

b | 8 la
A 4

28



GC Strategy #2: Mark and sweep

1. Mark reachable objects

2. Sweep through heap, collect
unreachable objects

o s Jala el Tealea | e o
)
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Mark and Sweep pros and cons

* Pros:
* Works on cyclic references
* Just traverse references once

* Cons:
* Have to sweep through whole heap (can optimize)
* Fragmentation

2 3 de ) etz
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GC Strategy #272: Mark and compact

1. Mark
2. Sweep

3. Compact live objects to same place
in heap

EEREEN S 30 £ S [ IR
AN )
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Mark and compact pros and cons

* Pros:
* Fragmentation solved

e Cons:
* Have to update pointers



Implementing Compaction (#1): Keep a
“forwarding pointer” in each object

1. Compute new locations of objects

N
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Implementing Compaction (#1): Keep a
“forwarding pointer” in each object

1. Compute new locations of objects

N
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Implementing Compaction (#1): Keep a
“forwarding pointer” in each object

1. Compute new locations of objects

SR
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Implementing Compaction (#1): Keep a
“forwarding pointer” in each object

2. Update all pointers

SR
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Implementing Compaction (
“forwarding pointer” in eac

3. Move

1): Keep a

N object
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Implementing Compaction (#2): Keep a table
in free space

* Table maps groups of consecutive objects to new offsets

N
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Implementing Compaction (#2): Keep a table
in free space

* Table maps groups of consecutive objects to new offsets

N
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Implementing Compaction (#2): Keep a table
in free space

* Table maps groups of consecutive objects to new offsets

N
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Implementing Compaction (#2): Keep a table
in free space

* Table maps groups of consecutive objects to new offsets
* “Roll” the table into free space if needed
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Implementing Compaction (#2): Keep a table
in free space

* Table maps groups of consecutive objects to new offsets

* “Roll” the table into free space if needed
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Implementing Compaction (#2): Keep a table
in free space

* Table maps groups of consecutive objects to new offsets
* “Roll” the table into free space if needed
* Need to sort the table at the end

CS 443 - Fall 2024 - Lecture 24
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Compacting allows for really fast allocation

* “Bump allocation”
* Heap pointer points to end of heap

* To allocate N bytes:
* Increment (“bump”) heap pointer by N
* If we pass the end of the heap, trigger a GC
* Return old value of heap pointer



. yes. That’s it. That’s how we implement malloc

__malloc:
lw t0, heapptr t0 = heap ptr
lw t2,heapend t2 = end of heap
add t1,t0,a0 tl = heap ptr + Nbytes

blt t2,tl, eom
sw tl,heapptr
addi a0,t0,0
jalr zero,ra,®
eom:

check if t1 > heap limit
heap ptr += Nbytes
© = old heap ptr
return
trigger GC

HHEHHFHHFHH



Bump allocation

let a = (1, 2)
let b = (3, 4)
let ¢ = (5, 6)
m) let d = (a, b)
let d = (a, ¢)
let e = (7, 8)

L\
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Bump allocation

let a = (1, 2)
let b = (3, 4)
let ¢ = (5, 6)
let d = (a, b)
- let d = (a, ¢)
let e = (7, 8)

S

PSS N X N R R F Y P I
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Bump allocation

(1, 2)
(3, 4)
(5, 6)
(a, b)
(a, c)
(7, 8)

T Q Q. N T W

S

PSS E N N N N T O O PR P
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GC Strategy #3: Copying

1. Divide heap into “from” space and “to” space
2. Copy live objects into “to” space
3. “From” space is now garbage

o

4200 13 (112 13 4| [ptp2fpilp2in 203 e ||
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Copying pros and cons

* Pros
* No traversing of whole heap
* No fragmentation

* Cons
* Heap size basically cut in half
* Have to move pointers



Copying Implementation: Just turn the from
space into forwarding pointers

To
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Copying Implementation: Just turn the from
space into forwarding pointers

N

From




Copying Implementation: Just turn the from
space into forwarding pointers

From

If you see a pointer to an object
that’s already been copied, update
the ptr with the forwarding ptr

To
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Another side benefit of copying

let rec 1list 1 n =
if n <= @ then 1
else
list ((List.length

i

What happened

(List.init (n mod 5) id))::1) here?

(n - 1)

let 1 = list [] 10000
do n times 3 (fun _ -> traverse 1)
(* Do other stuff *)

do n _times 3 (fun -> traverse 1)
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Traversga 11st in 0.00016s
Travesd cd list in 0.090016s
Trafersed list in 0.00016s

Starting new major GC cycle
Traversed list in ©0.00007s
Traversed list in ©.00006s
Traversed list in ©.00006s

54



Another side benefit of copying

— R —




Another side benefit of copying




Another side benefit of copying

«--y-




Another side benefit of copying

B g




Another side benefit of copying

— T



Generational garbage collection

* |dea: “most objects ‘die young’”
e Separate heap into areas called generations
* Collect younger generations more aggressively/frequently

0 1 2 3

“Nursery”
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Efficiency

* Most GCs we have discussed are “stop the world”
» Stop program, do a collection
* Pause time: amount of time a program must wait for the collector

* To reduce pause time, many real-world GCs are concurrent or
incremental (do small amounts of work as the program runs)



In practice, pause times are pretty short

* Don’t let people tell you GC makes it totally impractical to use
functional languages for real code

GC type time ms number bytes bytes/sec

copying 3,063 37 2,111,703,368 689,423,253
mark-compact %) 0 %) -
minor %) 11 4,520 -

total time: 19,902 ms

total GC time: 3,472 ms (17.4%)

max pause time: 433 ms 3472 ms /37 =93ms avg.
total bytes allocated: 15,794,832,336 bytes

max bytes live: 140,663,592 bytes

max heap size: 1,125,367,808 bytes



OCaml

* Two generations: minor heap and major heap
* Allocate large objects directly into major heap
* “Minor collections” frequent
* “Major collections” when necessary

* Major collections are (concurrent) mark-compact

* Not to be confused with parallel GC (GC runs on multiple threads to reduce
pause time)



Java (HotSpot JVM)

Old

Survivor
Survivor
Virtual

.
e Generational : l

Virtual

\ J

-
-

Young

e Eden (nursery) ]

* Live objects copied from Eden to one of two “survivor” spaces
* Copying collection used to copy between survivor spaces

* After a certain number of copies, moved to “old” generation

 Several different collection strategies available for different
applications



Python

» Reference Counting*
* Generational
* Cycles?
* |t’'s complicated



	Slide 1: CS443: Compiler Construction
	Slide 2: Memory layout
	Slide 3: Objects can be nested
	Slide 4: Memory management answers two questions
	Slide 5: MM breaks down into two basic strategies
	Slide 6: What about Rust?
	Slide 7: Manual Memory Management
	Slide 8: Manual Memory Management
	Slide 9: Manual Memory Management
	Slide 10: Manual Memory Management
	Slide 11: Manual Memory Management
	Slide 12: Manual Memory Management
	Slide 13: Manual Memory Management
	Slide 14: Manual Memory Management
	Slide 15: Manual pros and cons
	Slide 16: Functional languages allocate a lot
	Slide 17: Reachability and garbage
	Slide 18: Objects not reachable from roots are dead/garbage
	Slide 19: Knowing what points to what isn’t as easy as it sounds
	Slide 20: Knowing what points to what isn’t as easy as it sounds
	Slide 21: OCaml’s clever hack: use the LSB to indicate integer or pointer
	Slide 22: OCaml’s clever hack: use the LSB to indicate integer or pointer
	Slide 23: OCaml’s clever hack: use the LSB to indicate integer or pointer
	Slide 24: OCaml’s clever hack: use the LSB to indicate integer or pointer
	Slide 25: OCaml’s clever hack: use the LSB to indicate integer or pointer
	Slide 26: GC Strategy #1: Reference counting
	Slide 27: Reference counting pros
	Slide 28: Reference counting cons
	Slide 29: GC Strategy #2: Mark and sweep
	Slide 30: Mark and Sweep pros and cons
	Slide 31: GC Strategy #2½: Mark and compact
	Slide 32: Mark and compact pros and cons
	Slide 33: Implementing Compaction (#1): Keep a “forwarding pointer” in each object
	Slide 34: Implementing Compaction (#1): Keep a “forwarding pointer” in each object
	Slide 35: Implementing Compaction (#1): Keep a “forwarding pointer” in each object
	Slide 36: Implementing Compaction (#1): Keep a “forwarding pointer” in each object
	Slide 37: Implementing Compaction (#1): Keep a “forwarding pointer” in each object
	Slide 38: Implementing Compaction (#2): Keep a table in free space
	Slide 39: Implementing Compaction (#2): Keep a table in free space
	Slide 40: Implementing Compaction (#2): Keep a table in free space
	Slide 41: Implementing Compaction (#2): Keep a table in free space
	Slide 42: Implementing Compaction (#2): Keep a table in free space
	Slide 43: Implementing Compaction (#2): Keep a table in free space
	Slide 44: Compacting allows for really fast allocation
	Slide 45: … yes. That’s it. That’s how we implement malloc
	Slide 46: Bump allocation
	Slide 47: Bump allocation
	Slide 48: Bump allocation
	Slide 49: GC Strategy #3: Copying
	Slide 50: Copying pros and cons
	Slide 51: Copying Implementation: Just turn the from space into forwarding pointers
	Slide 52: Copying Implementation: Just turn the from space into forwarding pointers
	Slide 53: Copying Implementation: Just turn the from space into forwarding pointers
	Slide 54: Another side benefit of copying
	Slide 55: Another side benefit of copying
	Slide 56: Another side benefit of copying
	Slide 57: Another side benefit of copying
	Slide 58: Another side benefit of copying
	Slide 59: Another side benefit of copying
	Slide 60: Generational garbage collection
	Slide 61: Efficiency
	Slide 62: In practice, pause times are pretty short
	Slide 63: OCaml
	Slide 64: Java (HotSpot JVM)
	Slide 65: Python

