CS443: Compiler
Construction

Lecture 26: Parallelism and Concurrency
Stefan Muller

Concurrency: Interleave multiple threads
* Modularity
* Responsiveness

e Can be on multiple processors or time slicing

Parallelism: Run computations simultaneously on mult. processors
e Speed up computation
* Need multiple processors

Using concurrency for events

while(true) {
if (can_accept(sock))
conns[num_conns++] = accept(sock);
for (int 1 = @; 1 < num_conns; i++) {
if (has_request(conns[i])) { .. } } }

) 4

while(true) { while(true) { while(true) {
conn = accept(sock); req = recv(conn); req = recv(conn);

create_handling_thread(conn);

} \ \

CS 443 - Fall 2024 - Lecture 26

Using concurrency to implement parallelism

int sum;

void sum_array(int A[], int 1, int h) {
for (int 1 = 1; 1 < h; i++) {
sum += A[i];

Careful! Race
} condition!

¥

CS 443 - Fall 2024 - Lecture 26

Race conditions: multiple threads accessing
data simultaneously

int x = 0;

for (int i = 0; i < 1000; i++) { for (int i = @0; i < 1000; i++) {
X++;

¥

X++;

¥

What are the possible values of x?

A:
templ = X; [1000, 2000]

temp2 = X;
X = templ + 1;
X = temp2 + 1;

OK, so what does this have to do with
compilers?

s this a safe optimization?

int x = 0;

for (int i = 0; i < 1000; i++) { | for (int 1 = 0; i < 1000; i++) {
X++;

¥

X++;

Changes set of possible

X += 1000; X += 1000; answers (now just 1000,
2000) but maybe?

CS 443 - Fall 2024 - Lecture 26

s this a safe optimization?

int num_conns; while(true) {
while(true) { for (int i = @; i < num_conns; i++) {
conn = accept(sock);
create_handling thread(conn); }
num_conns++; }
) Don’t even have to explicitly intend this as an
‘ optimization: could just be the result of
putting num_conns in a register!
int num_conns; int n = num_conns;
while(true) { while(true) {
conn = accept(sock); for (int i = 0; 1 < n; i++) {
create _handling thread(conn);
num_conns++; }
} }

CS 443 - Fall 2024 - Lecture 26 8

s this a safe optimization?

int a; int a;

int b; int b;

int c; int c;

int d; int d;

int f() { ‘ int f() {
c =a * b; c =a * b;
d=a*b + a; d = c + a;
return d; return d;

¥ }

CS 443 - Fall 2024 - Lecture 26

No, under our previous def. (it can change the
answer)!

int a;
int b;
int c;
int d;

int g() {

int f() { e

c =a * b;
d=a*b+ aj;
return d; }

return c;

¥

C’svolatile keyword tells the compiler the
value might change at any time

volatile int a;
volatile int b;
volatile int c;

volatile int d;
(Doesn’t fix data races)
int f() {

c = a * b;
d=a*b + aj;
return d;

¥

CS 443 - Fall 2024 - Lecture 26 11

s this a valid compilation?

X = 42;

Z =Y,
return z;
X = 42;

Z =Y,

return z;

lw a0, 0(t9) # a0 =y

addi t1, zero, 42 # t1 = 42

sw tl, 0(t2) # X = 42
y = X, Got it. | won’t

do that
reordering.

return Xx;

CS 443 - Fall 2024 - Lecture 26 12

When designhing a language, we can offer a
more abstract version of parallelism

* Allowing OCaml programmers to call pthread create is likely to
cause all hell to break loose

“Implicit” parallelism

let rec fib (n: int) =
if n <= 1 then n
else
let (a, b) = par (fib (n - 2), fib (n - 1))
in
a + b

Announcements

* Proj6 Due Tomorrow

* Proj5 grades posted

e Office Hours 11:15-12:15 (SB 218E)

* Final: Monday, Dec. 2, 2-4pm, SB111 (Not this room; across the hall)

Final Exam

* Content: Everything! (Heavier on content since midterm)
* The last ~1.5 lectures: no detailed questions, but fair game for MC, short ans.

* Open book, open notes
e Same rough format as midterm (MC + Short answer + Longer Qs)

* Reference material
* MinilITRAN + MiniC specs (same as midterm)
e Partial LLVM instruction ref (same as midterm)
* Risc-V Green Sheet

* Practice exam + solutions + reference material online

How to implement par?

e pthread create, pthread_join
* WAY better off just running sequentially-overhead of pthreads is huge

CS 443 - Fall 2024 - Lecture 26

17

User-level lightweight threads

One global thread pool:

too much contention

| 8 & ®

One pthread per processor

CS 443 - Fall 2024 - Lecture 26 18

Work stealing: one queue of tasks per
processor

| 8 & ®

One pthread per processor

CS 443 - Fall 2024 - Lecture 26

19

Each thread gets its own environment, but

share a heap
let rec gsort 1 = 3 12 |5 (1 [X |2 1 [X |5 X

match 1 with
[1 -> []
[x] -> [x]
p::1 ->
let (a, b) = partition p 1 in
let (a_sort, b sort) =
par (gsort a, gsort b)
in
a sort @ [p] @ b_sort

CS 443 - Fall 2024 - Lecture 26

20

Each thread gets its own environment, but

share a heap
let rec gsort 1 = 3 12 5 1 X [2 |1 [x_

match 1 with
[1 -> []
[x] -> [x]
p::1 ->
let (a, b) = partition p 1 in
let (a_sort, b sort) =

par (gsort a, gsort b)
in
a sort @ [p] @ b_sort

CS 443 - Fall 2024 - Lecture 26 21

Problems with shared heap

e Contention on allocation
* Can give each thread a separate heap pointer

* Need stop-the-world GC

* All threads need to synchronize

Copying GC can be parallelized

To To
Thread 1 Thread 2

CS 443 - Fall 2024 - Lecture 26 23

Copying GC can be parallelized

N

From

To To
Thread 1 Thread 2

CS 443 - Fall 2024 - Lecture 26 24

Copying GC can be parallelized

From

To To
Thread 1 Thread 2

CS 443 - Fall 2024 - Lecture 26

Copying GC can be parallelized

From

TO-:-

CS 443 - Fall 2024 - Lecture 26

26

Copying GC can be parallelized

* That’s (roughly) what Haskell does
e Still doesn’t solve the problem of stopping, synchronizing all threads

|dea: Give each thread its own heap
& ST

CS 443 - Fall 2024 - Lecture 26

28

|dea: Give each thread its own heap
3 12 |5 11 /X |2 1 X |5 X

CS 443 - Fall 2024 - Lecture 26

29

|dea: Give each thread its own heap
3 12 |5 11 /X |2 1 X |5 X

CS 443 - Fall 2024 - Lecture 26

30

|dea: Give each thread its own heap
3 12 |5 11 X 12 11 X |5 X

CS 443 - Fall 2024 - Lecture 26

31

Merge heaps with parent when threads finish

« gRzIEEEm

Key point: In FP, pointers only go up or down

in the heap hierarchy (“disentanglement™)
3 12 |5 11 X 12 11 X |5 X

— — — —— — —_—— e ———
—_— —_—— —_— -
- =~

—
e —— e ——

- —_—
- —_—
—— e — —— T

Can GC any leaf heap!

CS 443 - Fall 2024 - Lecture 26

33

In general, can GC any subtree without
stopping other threads

Hierarchical Memory Management for Parallel Programs

Ram Raghunathan” Stefan K. Muller” Umut A. Acar' ' Guy Blelloch®

*Camnegie Mellon University, USA tInria, France
{ram.r, smuller, umut, blelloch)@e¢s.cmu.edu

(ICFP 2016)

CS 443 - Fall 2024 - Lecture 26 34

Disentanglement isn’t guaranteed with side
effects

let set _rand (mine: int list ref) (other: int list ref) =
lr := random_list ();
(Imine) @ (!other)

in

let rl: int list ref = ref [] in

let r2: int list ref = ref [] in

par (set rand rl r2, set rand r2 ril)

VAAN

CS 443 - Fall 2024 - Lecture 26 35

Disentanglement isn’t guaranteed with side
effects

let set _rand (mine: int list ref) (other: int list ref) =
lr := random_list ();
(Imine) @ ('other)

in

let rl: int list ref = ref [] in

let r2: int list ref = ref [] in

par (set rand rl r2, set rand r2 ril)

CS 443 - Fall 2024 - Lecture 26 36

Disentanglement isn’t guaranteed with side
effects

let set _rand (mine: int list ref) (other: int list ref) =
mine := (random_list ()) @ ('other)

in

let rl: int list ref = ref [] in

let r2: int list ref = ref [] in

par (set rand rl r2, set rand r2 ril)

CS 443 - Fall 2024 - Lecture 26 37

Actually, disentanglement is guaranteed as
long as there are no data races

Disentanglement in Nested-Parallel Programs

SAM WESTRICK, Carnegie Mellon University, USA
ROHAN YADAV, Carnegie Mellon University, USA
MATTHEW FLUET, Rochester Institute of Technology, USA
UMUT A. ACAR, Carnegie Mellon University, USA

(POPL 2020)

CS 443 - Fall 2024 - Lecture 26

38

Actually, disentanglement is guaranteed as long as
there are no data races on boxed objects

Disentanglement with Futures, State, and Interaction

JATIN ARORA, Carnegie Mellon University, USA
STEFAN K. MULLER, Ilinois Institute of Technology, USA
UMUT A. ACAR, Carnegie Mellon University, USA

(POPL 2024)

CS 443 - Fall 2024 - Lecture 26 39

	Slide 1: CS443: Compiler Construction
	Slide 2
	Slide 3: Using concurrency for events
	Slide 4: Using concurrency to implement parallelism
	Slide 5: Race conditions: multiple threads accessing data simultaneously
	Slide 6: OK, so what does this have to do with compilers?
	Slide 7: Is this a safe optimization?
	Slide 8: Is this a safe optimization?
	Slide 9: Is this a safe optimization?
	Slide 10: No, under our previous def. (it can change the answer)!
	Slide 11: C’s volatile keyword tells the compiler the value might change at any time
	Slide 12: Is this a valid compilation?
	Slide 13: When designing a language, we can offer a more abstract version of parallelism
	Slide 14: “Implicit” parallelism
	Slide 15: Announcements
	Slide 16: Final Exam
	Slide 17: How to implement par?
	Slide 18: User-level lightweight threads
	Slide 19: Work stealing: one queue of tasks per processor
	Slide 20: Each thread gets its own environment, but share a heap
	Slide 21: Each thread gets its own environment, but share a heap
	Slide 22: Problems with shared heap
	Slide 23: Copying GC can be parallelized
	Slide 24: Copying GC can be parallelized
	Slide 25: Copying GC can be parallelized
	Slide 26: Copying GC can be parallelized
	Slide 27: Copying GC can be parallelized
	Slide 28: Idea: Give each thread its own heap
	Slide 29: Idea: Give each thread its own heap
	Slide 30: Idea: Give each thread its own heap
	Slide 31: Idea: Give each thread its own heap
	Slide 32: Merge heaps with parent when threads finish
	Slide 33: Key point: In FP, pointers only go up or down in the heap hierarchy (“disentanglement”)
	Slide 34: In general, can GC any subtree without stopping other threads
	Slide 35: Disentanglement isn’t guaranteed with side effects
	Slide 36: Disentanglement isn’t guaranteed with side effects
	Slide 37: Disentanglement isn’t guaranteed with side effects
	Slide 38: Actually, disentanglement is guaranteed as long as there are no data races
	Slide 39: Actually, disentanglement is guaranteed as long as there are no data races on boxed objects

