CS443: Compiler
Construction

Lecture 26: Parallelism and Concurrency
Stefan Muller



Concurrency: Interleave multiple threads
* Modularity
* Responsiveness

e Can be on multiple processors or time slicing

Parallelism: Run computations simultaneously on mult. processors
e Speed up computation
* Need multiple processors



Using concurrency for events

while(true) {
if (can_accept(sock))
conns[num_conns++] = accept(sock);
for (int 1 = @; 1 < num_conns; i++) {
if (has_request(conns[i])) { .. } } }

) 4

while(true) { while(true) { while(true) {
conn = accept(sock); req = recv(conn); req = recv(conn);

create_handling_thread(conn);

} \ \
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Using concurrency to implement parallelism

int sum;

void sum_array(int A[], int 1, int h) {
for (int 1 = 1; 1 < h; i++) {
sum += A[i];

Careful! Race
} condition!

¥
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Race conditions: multiple threads accessing
data simultaneously

int x = 0;

for (int i = 0; i < 1000; i++) { for (int i = @0; i < 1000; i++) {
X++;

¥

X++;

¥

What are the possible values of x?

A:
templ = X; [1000, 2000]

temp2 = X;
X = templ + 1;
X = temp2 + 1;



OK, so what does this have to do with
compilers?



s this a safe optimization?

int x = 0;

for (int i = 0; i < 1000; i++) { | for (int 1 = 0; i < 1000; i++) {
X++;

¥

X++;

Changes set of possible

X += 1000; X += 1000; answers (now just 1000,
2000) but maybe?
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s this a safe optimization?

int num_conns; while(true) {
while(true) { for (int i = @; i < num_conns; i++) {
conn = accept(sock);
create_handling thread(conn); }
num_conns++; }
) Don’t even have to explicitly intend this as an
‘ optimization: could just be the result of
putting num_conns in a register!
int num_conns; int n = num_conns;
while(true) { while(true) {
conn = accept(sock); for (int i = 0; 1 < n; i++) {
create _handling thread(conn);
num_conns++; }
} }
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s this a safe optimization?

int a; int a;

int b; int b;

int c; int c;

int d; int d;

int f() { ‘ int f() {
c =a * b; c =a * b;
d=a*b + a; d = c + a;
return d; return d;

¥ }
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No, under our previous def. (it can change the
answer)!

int a;
int b;
int c;
int d;

int g() {

int f() { e

c =a * b;
d=a*b+ aj;
return d; }

return c;

¥



C’svolatile keyword tells the compiler the
value might change at any time

volatile int a;
volatile int b;
volatile int c;

volatile int d;
(Doesn’t fix data races)
int f() {

c = a * b;
d=a*b + aj;
return d;

¥
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s this a valid compilation?

X = 42;

Z =Y,
return z;
X = 42;

Z =Y,

return z;

lw a0, 0(t9) # a0 =y

addi t1, zero, 42 # t1 = 42

sw tl, 0(t2) # X = 42
y = X, Got it. | won’t

do that
reordering.

return Xx;
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When designhing a language, we can offer a
more abstract version of parallelism

* Allowing OCaml programmers to call pthread create is likely to
cause all hell to break loose



“Implicit” parallelism

let rec fib (n: int) =
if n <= 1 then n
else
let (a, b) = par (fib (n - 2), fib (n - 1))
in
a + b



Announcements

* Proj6 Due Tomorrow

* Proj5 grades posted

e Office Hours 11:15-12:15 (SB 218E)

* Final: Monday, Dec. 2, 2-4pm, SB111 (Not this room; across the hall)



Final Exam

* Content: Everything! (Heavier on content since midterm)
* The last ~1.5 lectures: no detailed questions, but fair game for MC, short ans.

* Open book, open notes
e Same rough format as midterm (MC + Short answer + Longer Qs)

* Reference material
* MinilITRAN + MiniC specs (same as midterm)
e Partial LLVM instruction ref (same as midterm)
* Risc-V Green Sheet

* Practice exam + solutions + reference material online



How to implement par?

e pthread create, pthread_join
* WAY better off just running sequentially-overhead of pthreads is huge
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User-level lightweight threads

One global thread pool:

too much contention

| 8 & ®

One pthread per processor
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Work stealing: one queue of tasks per
processor

| 8 & ®

One pthread per processor
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Each thread gets its own environment, but

share a heap
let rec gsort 1 = 3 12 |5 (1 [X |2 1 [X |5 X

match 1 with
[1 -> []
[x] -> [x]
p::1 ->
let (a, b) = partition p 1 in
let (a_sort, b sort) =
par (gsort a, gsort b)
in
a sort @ [p] @ b_sort
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Each thread gets its own environment, but

share a heap
let rec gsort 1 = 3 12 5 1 X [2 |1 [x_

match 1 with
[1 -> []
[x] -> [x]
p::1 ->
let (a, b) = partition p 1 in
let (a_sort, b sort) =

par (gsort a, gsort b)
in
a sort @ [p] @ b_sort
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Problems with shared heap

e Contention on allocation
* Can give each thread a separate heap pointer

* Need stop-the-world GC

* All threads need to synchronize



Copying GC can be parallelized

To To
Thread 1 Thread 2
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Copying GC can be parallelized

N

From

To To
Thread 1 Thread 2
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Copying GC can be parallelized

From

To To
Thread 1 Thread 2

CS 443 - Fall 2024 - Lecture 26



Copying GC can be parallelized

From

TO-:-
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Copying GC can be parallelized

* That’s (roughly) what Haskell does
e Still doesn’t solve the problem of stopping, synchronizing all threads



|dea: Give each thread its own heap
& ST
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|dea: Give each thread its own heap
3 12 |5 11 /X |2 1 X |5 X
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|dea: Give each thread its own heap
3 12 |5 11 /X |2 1 X |5 X
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|dea: Give each thread its own heap
3 12 |5 11 X 12 11 X |5 X
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Merge heaps with parent when threads finish

« gRzIEEEm




Key point: In FP, pointers only go up or down

in the heap hierarchy (“disentanglement™)
3 12 |5 11 X 12 11 X |5 X

— — — —— — —_—— e ———
—_— —_—— —_— -
- =~

—
e —— e ——

- —_—
- —_—
—— e — —— T

Can GC any leaf heap!
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In general, can GC any subtree without
stopping other threads

Hierarchical Memory Management for Parallel Programs

Ram Raghunathan” Stefan K. Muller” Umut A. Acar' ' Guy Blelloch®

*Camnegie Mellon University, USA tInria, France
{ram.r, smuller, umut, blelloch)@e¢s.cmu.edu

(ICFP 2016)
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Disentanglement isn’t guaranteed with side
effects

let set _rand (mine: int list ref) (other: int list ref) =
lr := random_list ();
(Imine) @ (!other)

in

let rl: int list ref = ref [] in

let r2: int list ref = ref [] in

par (set rand rl r2, set rand r2 ril)

VAAN
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Disentanglement isn’t guaranteed with side
effects

let set _rand (mine: int list ref) (other: int list ref) =
lr := random_list ();
(Imine) @ ('other)

in

let rl: int list ref = ref [] in

let r2: int list ref = ref [] in

par (set rand rl r2, set rand r2 ril)
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Disentanglement isn’t guaranteed with side
effects

let set _rand (mine: int list ref) (other: int list ref) =
mine := (random_list ()) @ ('other)

in

let rl: int list ref = ref [] in

let r2: int list ref = ref [] in

par (set rand rl r2, set rand r2 ril)

CS 443 - Fall 2024 - Lecture 26 37



Actually, disentanglement is guaranteed as
long as there are no data races

Disentanglement in Nested-Parallel Programs

SAM WESTRICK, Carnegie Mellon University, USA
ROHAN YADAV, Carnegie Mellon University, USA
MATTHEW FLUET, Rochester Institute of Technology, USA
UMUT A. ACAR, Carnegie Mellon University, USA

(POPL 2020)
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Actually, disentanglement is guaranteed as long as
there are no data races on boxed objects

Disentanglement with Futures, State, and Interaction

JATIN ARORA, Carnegie Mellon University, USA
STEFAN K. MULLER, Ilinois Institute of Technology, USA
UMUT A. ACAR, Carnegie Mellon University, USA

(POPL 2024)
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