
CS443: Compiler
Construction

Lecture 26: Parallelism and Concurrency

Stefan Muller

CS 443 - Fall 2024 - Lecture 26 1

Concurrency: Interleave multiple threads

• Modularity

• Responsiveness

• Can be on multiple processors or time slicing

Parallelism: Run computations simultaneously on mult. processors

• Speed up computation

• Need multiple processors

CS 443 - Fall 2024 - Lecture 26 2

Using concurrency for events

while(true) {

 if (can_accept(sock))

 conns[num_conns++] = accept(sock);

 for (int i = 0; i < num_conns; i++) {

 if (has_request(conns[i])) { … } } }

CS 443 - Fall 2024 - Lecture 26 3

while(true) {
 conn = accept(sock);
 create_handling_thread(conn);
}

while(true) {
 req = recv(conn);
 …
}

while(true) {
 req = recv(conn);
 …
}

Using concurrency to implement parallelism

int sum;

void sum_array(int A[], int l, int h) {

 for (int i = l; i < h; i++) {

 sum += A[i];

 }

}

CS 443 - Fall 2024 - Lecture 26 4

Careful! Race
condition!

Race conditions: multiple threads accessing
data simultaneously
int x = 0;

for (int i = 0; i < 1000; i++) {

 x++;

}

What are the possible values of x?

CS 443 - Fall 2024 - Lecture 26 5

for (int i = 0; i < 1000; i++) {
 x++;
}

temp1 = x;
 temp2 = x;
x = temp1 + 1;
 x = temp2 + 1;

A: [1000, 2000]

OK, so what does this have to do with
compilers?

CS 443 - Fall 2024 - Lecture 26 6

Is this a safe optimization?

int x = 0;

for (int i = 0; i < 1000; i++) {

 x++;

}

x += 1000;

CS 443 - Fall 2024 - Lecture 26 7

for (int i = 0; i < 1000; i++) {
 x++;
}

x += 1000;
Changes set of possible
answers (now just 1000,

2000) but maybe?

Is this a safe optimization?

CS 443 - Fall 2024 - Lecture 26 8

int num_conns;
while(true) {
 conn = accept(sock);
 create_handling_thread(conn);
 num_conns++;
}

while(true) {
 for (int i = 0; i < num_conns; i++) {
 …
 }
}

int num_conns;
while(true) {
 conn = accept(sock);
 create_handling_thread(conn);
 num_conns++;
}

int n = num_conns;
while(true) {
 for (int i = 0; i < n; i++) {
 …
 }
}

Don’t even have to explicitly intend this as an
optimization: could just be the result of

putting num_conns in a register!

Is this a safe optimization?

int a;

int b;

int c;

int d;

int f() {

 c = a * b;

 d = a * b + a;

 return d;

}

CS 443 - Fall 2024 - Lecture 26 9

int a;

int b;

int c;

int d;

int f() {

 c = a * b;

 d = c + a;

 return d;

}

No, under our previous def. (it can change the
answer)!
int a;

int b;

int c;

int d;

int f() {

 c = a * b;

 d = a * b + a;

 return d;

}

CS 443 - Fall 2024 - Lecture 26 10

int g() {

 c++;

 return c;

}

C’s volatile keyword tells the compiler the
value might change at any time
volatile int a;
volatile int b;
volatile int c;
volatile int d;

int f() {
 c = a * b;
 d = a * b + a;
 return d;
}

CS 443 - Fall 2024 - Lecture 26 11

(Doesn’t fix data races)

Is this a valid compilation?

x = 42;

z = y;

return z;

CS 443 - Fall 2024 - Lecture 26 12

lw a0, 0(t0) # a0 = y

addi t1, zero, 42 # t1 = 42

sw t1, 0(t2) # x = 42

x = 42;

z = y;

return z;

y = x;

return x;

Got it. I won’t
do that

reordering.
I might.

When designing a language, we can offer a
more abstract version of parallelism
• Allowing OCaml programmers to call pthread_create is likely to

cause all hell to break loose

CS 443 - Fall 2024 - Lecture 26 13

“Implicit” parallelism

let rec fib (n: int) =

 if n <= 1 then n

 else

 let (a, b) = par (fib (n – 2), fib (n – 1))

 in

 a + b

CS 443 - Fall 2024 - Lecture 26 14

Announcements

• Proj6 Due Tomorrow

• Proj5 grades posted

• Office Hours 11:15-12:15 (SB 218E)

• Final: Monday, Dec. 2, 2-4pm, SB111 (Not this room; across the hall)

CS 443 - Fall 2024 - Lecture 26 15

Final Exam

• Content: Everything! (Heavier on content since midterm)
• The last ~1.5 lectures: no detailed questions, but fair game for MC, short ans.

• Open book, open notes

• Same rough format as midterm (MC + Short answer + Longer Qs)

• Reference material
• MiniIITRAN + MiniC specs (same as midterm)

• Partial LLVM instruction ref (same as midterm)

• Risc-V Green Sheet

• Practice exam + solutions + reference material online

CS 443 - Fall 2024 - Lecture 26 16

How to implement par?

• pthread_create, pthread_join
• WAY better off just running sequentially-overhead of pthreads is huge

CS 443 - Fall 2024 - Lecture 26 17

… … … …

User-level lightweight threads

One pthread per processor

CS 443 - Fall 2024 - Lecture 26 18

fib(4)

fib(3)

fib(2)

One global thread pool:
too much contention

Work stealing: one queue of tasks per
processor

One pthread per processor

CS 443 - Fall 2024 - Lecture 26 19

fib(4)

fib(3)

fib(2)

Each thread gets its own environment, but
share a heap
let rec qsort l =

 match l with

 | [] -> []

 | [x] -> [x]

 | p::l ->

 let (a, b) = partition p l in

 let (a_sort, b_sort) =

 par (qsort a, qsort b)

 in

 a_sort @ [p] @ b_sort

CS 443 - Fall 2024 - Lecture 26 20

3 2 5 1 X 2 1 X 5 X

Each thread gets its own environment, but
share a heap
let rec qsort l =

 match l with

 | [] -> []

 | [x] -> [x]

 | p::l ->

 let (a, b) = partition p l in

 let (a_sort, b_sort) =

 par (qsort a, qsort b)

 in

 a_sort @ [p] @ b_sort

CS 443 - Fall 2024 - Lecture 26 21

3 2 5 1 X 2 1 X 5 X 1 X X X X

Problems with shared heap

• Contention on allocation
• Can give each thread a separate heap pointer

• Need stop-the-world GC
• All threads need to synchronize

CS 443 - Fall 2024 - Lecture 26 22

Copying GC can be parallelized

CS 443 - Fall 2024 - Lecture 26 23

From

To
Thread 1

To
Thread 2

Copying GC can be parallelized

CS 443 - Fall 2024 - Lecture 26 24

From

To
Thread 1

To
Thread 2

Copying GC can be parallelized

CS 443 - Fall 2024 - Lecture 26 25

From

To
Thread 1

To
Thread 2

Copying GC can be parallelized

CS 443 - Fall 2024 - Lecture 26 26

From

To To
Thread 2

Copying GC can be parallelized

• That’s (roughly) what Haskell does

• Still doesn’t solve the problem of stopping, synchronizing all threads

CS 443 - Fall 2024 - Lecture 26 27

Idea: Give each thread its own heap

3 2 5 1 X 2 1 X 5 X

CS 443 - Fall 2024 - Lecture 26 28

Idea: Give each thread its own heap

3 2 5 1 X 2 1 X 5 X

CS 443 - Fall 2024 - Lecture 26 29

1 X X X X

Idea: Give each thread its own heap

3 2 5 1 X 2 1 X 5 X

CS 443 - Fall 2024 - Lecture 26 30

1 X X X X

Idea: Give each thread its own heap

3 2 5 1 X 2 1 X 5 X

CS 443 - Fall 2024 - Lecture 26 31

1 X X 1 2 X X X 5 X

Merge heaps with parent when threads finish

3 2 5 1 X 2 1 X 5 X

1 X X 1 2 X X X 5 X

CS 443 - Fall 2024 - Lecture 26 32

Key point: In FP, pointers only go up or down
in the heap hierarchy (“disentanglement”)

3 2 5 1 X 2 1 X 5 X

CS 443 - Fall 2024 - Lecture 26 33

1 X X 1 2 X X X 5 X

Can GC any leaf heap!

In general, can GC any subtree without
stopping other threads

CS 443 - Fall 2024 - Lecture 26 34

(ICFP 2016)

Disentanglement isn’t guaranteed with side
effects
let set_rand (mine: int list ref) (other: int list ref) =

 lr := random_list ();

 (!mine) @ (!other)

in

let r1: int list ref = ref [] in

let r2: int list ref = ref [] in

par (set_rand r1 r2, set_rand r2 r1)

CS 443 - Fall 2024 - Lecture 26 35

X X r1 r2

Disentanglement isn’t guaranteed with side
effects
let set_rand (mine: int list ref) (other: int list ref) =

 lr := random_list ();

 (!mine) @ (!other)

in

let r1: int list ref = ref [] in

let r2: int list ref = ref [] in

par (set_rand r1 r2, set_rand r2 r1)

CS 443 - Fall 2024 - Lecture 26 36

X X r1 r2

8 2 1 X 2 5 3 X

Disentanglement isn’t guaranteed with side
effects
let set_rand (mine: int list ref) (other: int list ref) =

 mine := (random_list ()) @ (!other)

in

let r1: int list ref = ref [] in

let r2: int list ref = ref [] in

par (set_rand r1 r2, set_rand r2 r1)

CS 443 - Fall 2024 - Lecture 26 37

X X r1 r2

8 2 1 2 5 3

Actually, disentanglement is guaranteed as
long as there are no data races

CS 443 - Fall 2024 - Lecture 26 38

(POPL 2020)

Actually, disentanglement is guaranteed as long as
there are no data races on boxed objects

CS 443 - Fall 2024 - Lecture 26 39

(POPL 2024)

	Slide 1: CS443: Compiler Construction
	Slide 2
	Slide 3: Using concurrency for events
	Slide 4: Using concurrency to implement parallelism
	Slide 5: Race conditions: multiple threads accessing data simultaneously
	Slide 6: OK, so what does this have to do with compilers?
	Slide 7: Is this a safe optimization?
	Slide 8: Is this a safe optimization?
	Slide 9: Is this a safe optimization?
	Slide 10: No, under our previous def. (it can change the answer)!
	Slide 11: C’s volatile keyword tells the compiler the value might change at any time
	Slide 12: Is this a valid compilation?
	Slide 13: When designing a language, we can offer a more abstract version of parallelism
	Slide 14: “Implicit” parallelism
	Slide 15: Announcements
	Slide 16: Final Exam
	Slide 17: How to implement par?
	Slide 18: User-level lightweight threads
	Slide 19: Work stealing: one queue of tasks per processor
	Slide 20: Each thread gets its own environment, but share a heap
	Slide 21: Each thread gets its own environment, but share a heap
	Slide 22: Problems with shared heap
	Slide 23: Copying GC can be parallelized
	Slide 24: Copying GC can be parallelized
	Slide 25: Copying GC can be parallelized
	Slide 26: Copying GC can be parallelized
	Slide 27: Copying GC can be parallelized
	Slide 28: Idea: Give each thread its own heap
	Slide 29: Idea: Give each thread its own heap
	Slide 30: Idea: Give each thread its own heap
	Slide 31: Idea: Give each thread its own heap
	Slide 32: Merge heaps with parent when threads finish
	Slide 33: Key point: In FP, pointers only go up or down in the heap hierarchy (“disentanglement”)
	Slide 34: In general, can GC any subtree without stopping other threads
	Slide 35: Disentanglement isn’t guaranteed with side effects
	Slide 36: Disentanglement isn’t guaranteed with side effects
	Slide 37: Disentanglement isn’t guaranteed with side effects
	Slide 38: Actually, disentanglement is guaranteed as long as there are no data races
	Slide 39: Actually, disentanglement is guaranteed as long as there are no data races on boxed objects

