
IIT CS443: Compiler Construction

Project 0: IITRAN Interpreter

Prof. Stefan Muller

Out: Thursday, Aug. 22
Due: Tuesday, Sep. 3, 11:59pm CDT

Updated Aug. 28 (language spec clarifications)

This assignment contains 1 task(s) for a total of 15 points.

Logistics

Submission Instructions

Please read and follow these instructions carefully.

� Download the starter code by cloning the Github repo for the assignment: https://classroom.

github.com/a/PmLB5yVX. When you first go to the link, you’ll be asked to create/join a team (if
you’re working by yourself, just create a team with just you). Github will create one repo per team.

� If you’re not familiar with using Git, see the “Learn the Basics of Git in Under 10 Minutes” link under
Resources on the course website. (I haven’t verified that it takes under 10 minutes.)

� Submit your homework by pushing your changes to Github by the deadline (or the extended deadline
if taking late days). You can, of course, push non-finished code to your repo (e.g., while collaborating).
I’ll grade the last commit before the deadline. If you push to the repo one or two days after the
deadline, I’ll consider that a submission using late days and grade the last submission from the last
day.

� If you accidentally push to your repo after the deadline and didn’t intend to take late days, email me
ASAP. Otherwise, you do not need to let me know if you’re using late days; I’ll count them based on
the date of your last submission.

� Compile (by running make) before submitting. Submissions that don’t compile will not get
credit.

Collaboration and Academic Honesty

You may work in groups of at most 2 on this project. Read the policy on the website and be sure you
understand it.

1 OCaml

1.1 Set Up OCaml

The main purpose of this project is setting up OCaml (if you don’t have it set up already; if you do, lucky
you, skip to Section 2) and getting acquainted (or reacquainted) with it, so you can dive right in to the other

1

https://classroom.github.com/a/PmLB5yVX
https://classroom.github.com/a/PmLB5yVX

projects.
The instructions at https://ocaml.org/docs/installing-ocaml work well for Mac and Linux. The

best way I’ve found to get OCaml running on Windows is to set up WSL (instructions are at https://docs.
microsoft.com/en-us/windows/wsl/install) and then follow the Linux instructions. The instructions
above also describe how to set up support in your favorite editor (as long as it’s Emacs, Vim or VSCode.)

Finally, you will need to install Dune, a build system for OCaml (instructions also at the link above,
under Install Platform Tools).

Please start early so I and other students can help you out if you run into problems. Post on Discord
with questions/trouble/tips.

1.2 OCaml Basics

A Quick Guide to the OCaml Module System. Like many languages, OCaml uses modules for
abstraction and namespaces. Module names in OCaml begin with an uppercase letter (this isn’t just a
convention; it’s actually enforced by the language). You can access a definition (function or variable) bar

from a module Foo using the syntax Foo.bar. If you don’t want to keep typing Foo., there are two options:

� (Preferred) Bind it to a shorter name using, e.g.,

module F = Foo

Afterward, you can refer to F.bar.

� Open the module using open Foo, after which you can just refer to bar. This is fine to do sometimes,
but be careful that you’re not introducing conflicting names (e.g., if the file you’re working in already
contains a definition of something called bar; if it does, the newer definition will shadow the older one
and the compiler won’t warn you about this, potentially causing confusing errors!)

When working in multiple files, each file becomes a module. The name of the module is the name of the
file (without .ml) with the first letter capitalized. For example, in iit interp.ml, you can use the definitions
in varmap.ml by Varmap.... The project is already set up so that Dune, the build system, will find and link
the files correctly.

The OCaml Standard Library. OCaml comes with an extensive standard library, and there are many,
many 3rd party packages and libraries. That’s one of the reasons we’re using it. Keep the API reference
(https://v2.ocaml.org/api/index.html) handy while you’re working on projects for the course. That
page lists the API by module. As with any module, refer to standard library functions by, e.g., List.map.
It’s a good idea to spend a bit of time looking through the standard library just to get a sense of what’s
there, so you don’t spend a lot of time re-implementing something that’s just in the library. The tasks in
this project will get you familiar with a couple of the libraries you’ll be using a lot in the course.

2 MiniIITRAN Language Specification

In this project, you’ll be working with the language MiniIITRAN, a well-behaved, strongly typed subset of
IITRAN. Here, we give a specification of this language.

2

https://ocaml.org/docs/installing-ocaml
https://docs.microsoft.com/en-us/windows/wsl/install
https://docs.microsoft.com/en-us/windows/wsl/install
https://v2.ocaml.org/api/index.html

2.1 Syntax

digit ::= 0− 9
alpha ::= a− z,A− Z
alphanum ::= alpha | digit |

Identifiers id ::= alpha alphanum∗

Ident .Lists idlist ::= id | id , idlist
Numbers num ::= −? digit+
Types typ ::= INTEGER | CHARACTER | LOGICAL
Constants c ::= alpha | num
Binary Operators bop ::= + | − | ∗ | / | AND | OR |<|≤|>|≥| # |=
Unary Operators unop ::= ∼| NOT | CHAR | LG | INT
Expressions e ::= c | id | e bop e | e <− e | unop e
Statements s ::= e | STOP | DO s∗ END | IF e s | IF e s ELSE s |WHILE e s
Declaration d ::= typ idlist
Program p ::= d∗ s∗

Operator Precedence and Associativity.

Operator(s) Precedence Associativity
All unary operators 6 —
*, / 5 Left
+, - 4 Left
Comparison operators 3 Left
AND 2 Left
OR 1 Left
<− 0 Right

(Higher numbers indicate that operators have higher precedence, i.e., “bind tighter”). All operators are
left-associative except assignment. So, x <− y <− 2 + 5 should parse as x <− (y <− (2 + 5)).

Comments. Comments start with $ and go to the end of the line.

2.2 Semantics

Constants Numeric constants are specified as integers, possibly preceded by a − sign. Character constants
are specified as ’c’. There is no direct way to specify logical constants, but logical constants can be
introduced using LG n, which becomes logical true if n ≥ 0 and logical false if n < 0.

Variables Variables are declared with declarations, which declare one or more variables with a given type.
A variable may not be used without a declaration (this is a change from real IITRAN, but makes compilation
easier). Later declarations of variables take precedence over older declarations (the older declarations become
useless, as declarations must precede all statements.) Variable names are case-insensitive. Variables are
initialized to 0 (for logical variables, this means false, and for character variables, it means ASCII 0).

Binary Operations e1 bop e2
Operations are evaluated left-to-right (with short-circuiting as described below under “logical operators”):
e1 is evaluated before e2. This mostly matters when expressions contain assignments. For example, if B is
initially 0, then (B <- 1) + (B <- B + 1) should evaluate to 5.

Individual categories of binary operators are described below.

Arithmetic Operators (+, -, *, /) e1 bop e2
Types: e1 : INTEGER, e2 : INTEGER, result: INTEGER
Note: Integer overflows and division by zero result in runtime errors.

3

Comparison Operators (<,≤, >,≥,#,=) e1 bop e2
Types: e1 : INTEGER, e2 : INTEGER, result: LOGICAL
Note: # is “not equal to.”

Logical Operators (AND,OR) e1 bop e2
Types: e1 : LOGICAL, e2 : LOGICAL, result: LOGICAL
Important Note: Both AND and OR should short circuit, that is: if e1 evaluates to false, e2 should not be
evaluated at all in e1ANDe2 (and similar for e1ORe2 if e1 evaluates to true). In MiniIITRAN, this is mainly
relevant if e2 might divide by zero. For example, 1 > 0 OR 1 / 0 > 0 should never raise a divide-by-zero
exception.

Assignment x <− e
Types: x and e must have the same type. The result is of that same type.
Result: Compute e, assign its value to x and return the value.
Note: e1<−e2 where e1 is some expression other than a variable is a runtime error. For the purposes of this
class, it is unspecified whether or not such assignments are syntactically valid (so your parser may accept
them or not).

Integer Negation ∼ e
Types: e : INTEGER, result: INTEGER
Result: 0− e

Logical Negation NOT e
Types: e : LOGICAL, result: LOGICAL

Type Conversions INT, LG,CHAR.
The result type is as specified (INTEGER, LOGICAL, CHARACTER, respectively). The argument can have
any type.
LG n becomes logical true if n > 0 and logical false if n ≤ 0.
LG c, where c is a character is always logical true unless c is ASCII 0.
INT c returns the ASCII code of c.
INT l of a logical constant l returns 0 for false and 1 for true.
CHAR n returns the character with ASCII code n.
CHAR l returns the character with ASCII code 0 or 1.

Expression statements
Types: The expression must be well-typed with any type.
Result: The expression is computed. Any assignments are performed, but otherwise the value is ignored.

If statements IF e s1 ELSE s2
Types: e : LOGICAL.
Result: If e evaluates to true, performs s1, otherwise s2. If s2 is absent, control continues to the next
statement.

While statements WHILE e s
Types: e : LOGICAL.
Result: If e evaluates to true, performs s and then evaluates e again and loops. When e evaluates to false,
control continues to the next statement.

Stop Result: Ends execution of the program.

Do DO s1s2 . . . sn END
Types: All substatements must be well-typed. Result: Substatements are executed in order.

4

Program results. The program returns the value in the designated variable RESULT when execution
ends, either by control reaching the end of the programming or encountering a STOP. By convention,
RESULT should be declared to be an integer (programs should return integer values, and your compiler may
assume this is the case).

3 MiniIITRAN AST

The AST definition is in iit ast.ml. You can refer to any definition in this file using IITRAN.Ast. (This
is an exception to the usual way of turning file names into module names, but it’s a convention we’ll use
throughout the course.) However, we’ve already opened the module for you at the top of the file you’ll be
working in. There is one important thing to note about the AST definition. The definitions of expressions
(exp) and statements (stmt) carry additional information. An exp is a record containing three fields:

� edesc is the algebraic data type for expressions. This looks just like what we’ve seen in class; its
type is now exp instead of exp. Note that subexpressions (e.g., of EBinop) have type exp, so the
subexpressions also carry the extra information. The types exp and exp are mutually recursive.

� eloc, of type loc, is the location in the source code of the expression. A loc is a pair of two
Lexing.positions, giving the start position and end position of the expression. You can look up the
definition of Lexing.position in the standard library API, and an example of how to use it at the
bottom of ast.ml.

� einfo, which gives additional information of type ’a. The types ’a exp and ’a exp are parameterized
by this type. In general, this can be anything you want: the type ’a exp carries information of type
’a. We’ll use two types: unit exp, which we’ll call p exp, carries no information, and will be the
type for expressions that come right out of the parser, and typ exp, which we’ll call t exp, tags each
expression with each type. The type checker will turn a p exp into a t exp, and then you’ll compile
t exps in the next project (the type information will come in handy!)

You can access fields of a record using record.field so, for example, instead of pattern matching on an
expression e, you’d pattern match on e.edesc (and you can use e.eloc and e.einfo to get the location
and info). You can build a record with the syntax { field1 = val1; field2 = val2; ... }. We’ve
also provided functions mk exp : p exp -> loc -> p exp and mk t exp : ’a exp -> loc -> ’a ->

’a exp. For this assignment, you’re only really working with exp s (and shouldn’t need to build them), so
don’t worry too much about this now.

The definitions of ’a stmt , ’a stmt, p stmt and t stmt are similar, except that statements don’t have
types, so there’s no info field, just sdesc and sloc. The types for statements still have the ’a parameter
because they need to pass it on to expressions that are part of the statements.

4 Codebase and Convenience Functions

4.1 Printing

The file iit print.ml contains pretty-printing functions for IITRAN, which you might want to use during
debugging. You can access these functions using IITRAN.Print.f, where f is the name of the function or
definition. The interface for the Print module is in iit print.mli. Some of these functions return a string,
which you can use, e.g., with Printf.printf. Many take a Format.formatter as their first argument and
return unit. Use Format.std formatter to print to standard output. (You can also use other formatters to
print to standard error, build strings, etc.; see the documentation for the Format library for information.)

Please comment out or remove any code that prints to the console before submitting your
solution.

5

4.2 Varmap

The module Varmap provides a type (’a Varmap.t) and operations on finite maps whose keys are strings and
whose values are of type ’a, which is the way of writing a type variable of polymorphic types in OCaml1.
For example, an int Varmap.t maps strings to integers. The operations provided by Varmap are listed at
https://v2.ocaml.org/api/Map.S.html.

5 Task: MiniIITRAN Interpreter

As an introduction to OCaml (and a refresher on building interpreters), you’ll write part of the MiniIITRAN
interpreter, in iit interp.ml. The interpreter represents MiniIITRAN values as integers, together with their
MiniIITRAN type (e.g., (1, TInteger) represents the integer 1, but (1, TLogical) represents the logical
value true. The interpreter also maintains an environment of type env = (int * typ) Varmap.t. Its keys
are variables and the values are the current value (int, typ pair) of each variable.
Task 1 (Programming, 15 points).

Fill in the remaining cases in interp exp, which interprets an expression to produce the resulting
value and environment (remember, assignment is an expression, so evaluating expressions can change the
environment) as a triple of type int * typ * env.

� You don’t need to handle the case where the left-hand side of an assignment is some expression other
than a variable; this is not valid MiniIITRAN. This case is already filled in to raise a runtime error.
You can leave that there.

� You don’t need to worry about what to do in cases that would be a runtime type error (e.g., if you’re
assigning an integer to a variable that was already declared as some other type, or reading or assigning
to an undeclared variable). Your interpreter may do anything you want in such cases. Type errors will
already have been ruled out by the type checker, which runs before the interpreter, so they will never
come up. Static typing is great!

� Your interpreter should properly handle the short-circuiting behavior described in the language specifi-
cation above for AND and OR operations (e.g., when evaluating 1 > 0 OR 1 / 0 > 0, do not evaluate
1 / 0).

� You need not catch runtime errors like integer overflows, divide-by-zero, etc. If you just use the OCaml
integer operations, they’ll raise exceptions in these cases and it’s fine to just propagate that exception.

6 Testing

When you’re done, run make (in the top level directory of the repo, not in src) to compile your interpreter.
This produces a binary iit, which you can run on the command line like so:

./iit file.iit

where file.iit is an IITRAN source code file. This parses the source code, type-checks it2 and runs the
interpreter on it.

We’ve given you a number of test files in tests. Each program begins with a comment indicating the
expected result (recall that this is the value of variable RESULT), if the program is syntactically correct.
Files of the form tests/synerrN.iit should not parse and should result in a syntax error (for now, this is
just a test of our parser, but on the next project, it will be a test of your parser, which you’ll be writing).
You can run all of the tests by running (on the command line, still in the top level of the repo) make test.

1We could call it Stringmap but you’ll be using it a lot in this course to make maps of variables.
2The type-checker is defined in iit typecheck.ml. You’re welcome to take a look at it, though you shouldn’t need to do so,

and definitely shouldn’t need to modify it.

6

https://v2.ocaml.org/api/Map.S.html

	OCaml
	Set Up OCaml
	OCaml Basics

	MiniIITRAN Language Specification
	Syntax
	Semantics

	MiniIITRAN AST
	Codebase and Convenience Functions
	Printing
	Varmap

	Task: MiniIITRAN Interpreter
	Testing

