
IIT CS443: Compiler Construction

Project 1: MiniIITRAN Parser

Prof. Stefan Muller

Out: Tuesday, Sep. 10
Due: Tuesday, Sep. 17, 11:59pm CDT

Logistics

Submission Instructions

Please read and follow these instructions carefully.

� Download the starter code by cloning the Github repo for the assignment. When you first go to the
link, you’ll be asked to create/join a team (if you’re working by yourself, just create a team with just
you). Github will create one repo per team.

� Submit your homework by pushing your changes to Github by the deadline (or the extended deadline
if taking late days). You can, of course, push non-finished code to your repo (e.g., while collaborating).
I’ll grade the last commit before the deadline. If you push to the repo one or two days after the
deadline, I’ll consider that a submission using late days and grade the last submission from the last
day.

� If you accidentally push to your repo after the deadline and didn’t intend to take late days, email me
ASAP. Otherwise, you do not need to let me know if you’re using late days; I’ll count them based on
the date of your last submission.

� Compile (by running make) before submitting. Submissions that don’t compile will not get
credit.

Collaboration and Academic Honesty

You may work in groups of at most 2 on this project. Read the policy on the website and be sure you
understand it.

1 MiniIITRAN Language Specification

In this project, you’ll continue to work with the MiniIITRAN language (and AST definition in iit ast.ml)
from Project 0. The language specification is repeated here.

1

1.1 Syntax

digit ::= 0− 9
alpha ::= a− z,A− Z
alphanum ::= alpha | digit |

Identifiers id ::= alpha alphanum∗

Ident .Lists idlist ::= id | id , idlist
Numbers num ::= −? digit+
Types typ ::= INTEGER | CHARACTER | LOGICAL
Constants c ::= alpha | num
Binary Operators bop ::= + | − | ∗ | / | AND | OR |<|≤|>|≥| # |=
Unary Operators unop ::= ∼| NOT | CHAR | LG | INT
Expressions e ::= c | id | e bop e | e <− e | unop e
Statements s ::= e | STOP | DO s∗ END | IF e s | IF e s ELSE s |WHILE e s
Declaration d ::= typ idlist
Program p ::= d∗ s∗

Operator Precedence and Associativity.

Operator(s) Precedence Associativity
All unary operators 6 —
*, / 5 Left
+, - 4 Left
Comparison operators 3 Left
AND 2 Left
OR 1 Left
<− 0 Right

(Higher numbers indicate that operators have higher precedence, i.e., “bind tighter”). All operators are
left-associative except assignment. So, x <− y <− 2 + 5 should parse as x <− (y <− (2 + 5)).

Comments. Comments start with $ and go to the end of the line.

1.2 Semantics

Constants Numeric constants are specified as integers, possibly preceded by a − sign. Character constants
are specified as ’c’. There is no direct way to specify logical constants, but logical constants can be
introduced using LG n, which becomes logical true if n ≥ 0 and logical false if n < 0.

Variables Variables are declared with declarations, which declare one or more variables with a given type.
A variable may not be used without a declaration (this is a change from real IITRAN, but makes compilation
easier). Later declarations of variables take precedence over older declarations (the older declarations become
useless, as declarations must precede all statements.) Variable names are case-insensitive. Variables are
initialized to 0 (for logical variables, this means false, and for character variables, it means ASCII 0).

Binary Operations e1 bop e2
Operations are evaluated left-to-right (with short-circuiting as described below under “logical operators”):
e1 is evaluated before e2. This mostly matters when expressions contain assignments. For example, if B is
initially 0, then (B <- 1) + (B <- B + 1) should evaluate to 5.

Individual categories of binary operators are described below.

Arithmetic Operators (+, -, *, /) e1 bop e2
Types: e1 : INTEGER, e2 : INTEGER, result: INTEGER
Note: Integer overflows and division by zero result in runtime errors.

2

Comparison Operators (<,≤, >,≥,#,=) e1 bop e2
Types: e1 : INTEGER, e2 : INTEGER, result: LOGICAL
Note: # is “not equal to.”

Logical Operators (AND,OR) e1 bop e2
Types: e1 : LOGICAL, e2 : LOGICAL, result: LOGICAL
Important Note: Both AND and OR should short circuit, that is: if e1 evaluates to false, e2 should not be
evaluated at all in e1ANDe2 (and similar for e1ORe2 if e1 evaluates to true). In MiniIITRAN, this is mainly
relevant if e2 might divide by zero. For example, 1 > 0 OR 1 / 0 > 0 should never raise a divide-by-zero
exception.

Assignment x <− e
Types: x and e must have the same type. The result is of that same type.
Result: Compute e, assign its value to x and return the value.
Note: e1<−e2 where e1 is some expression other than a variable is a runtime error. For the purposes of this
class, it is unspecified whether or not such assignments are syntactically valid (so your parser may accept
them or not).

Integer Negation ∼ e
Types: e : INTEGER, result: INTEGER
Result: 0− e

Logical Negation NOT e
Types: e : LOGICAL, result: LOGICAL

Type Conversions INT, LG,CHAR.
The result type is as specified (INTEGER, LOGICAL, CHARACTER, respectively). The argument can have
any type.
LG n becomes logical true if n > 0 and logical false if n ≤ 0.
LG c, where c is a character is always logical true unless c is ASCII 0.
INT c returns the ASCII code of c.
INT l of a logical constant l returns 0 for false and 1 for true.
CHAR n returns the character with ASCII code n.
CHAR l returns the character with ASCII code 0 or 1.

Expression statements
Types: The expression must be well-typed with any type.
Result: The expression is computed. Any assignments are performed, but otherwise the value is ignored.

If statements IF e s1 ELSE s2
Types: e : LOGICAL.
Result: If e evaluates to true, performs s1, otherwise s2. If s2 is absent, control continues to the next
statement.

While statements WHILE e s
Types: e : LOGICAL.
Result: If e evaluates to true, performs s and then evaluates e again and loops. When e evaluates to false,
control continues to the next statement.

Stop Result: Ends execution of the program.

Do DO s1s2 . . . sn END
Types: All substatements must be well-typed. Result: Substatements are executed in order.

3

Program results. The program returns the value in the designated variable RESULT when execution
ends, either by control reaching the end of the programming or encountering a STOP. By convention,
RESULT should be declared to be an integer (programs should return integer values, and your compiler may
assume this is the case).

2 Task 1: MiniIITRAN Parser

In the first part of the project, you’ll write a Menhir parser for MiniIITRAN. I’ve given you the lexer, in
lexer.mll. You may want to take a look at it to get a sense of how the various tokens correspond to the
MiniIITRAN syntax. The main thing to note is that the tokens TINT, TCHARACTER, and TLOGICAL correspond
to the types INTEGER, CHARACTER, and LOGICAL, while the tokens CCHAR, CINT, and CLG correspond to
the unary operators for type conversion. Otherwise, things should be self-explanatory.

Note: The handout code will not quite compile as is, but you should still be able to get at least syntax
highlighting without it fully compiling. Other language server stuff isn’t as useful for writing parsers anyway.
Task 1 (Programming, 25 points).

Implement the parser for MiniIITRAN using Menhir, in iit parser.mly.

� The file so far has some headers, and %start and %type annotations. The definitions of the tokens are
in iit_tokens.mly. Don’t modify any of this.

� The parser file also contains dummy definitions for many, but not all, of the nonterminals you’ll
need. You shouldn’t need to modify the definitions of the following nonterminals: expr, identlist,
decl, stmt, stmtlist, stmtlist, decllist, prog. You’ll need to modify the other definitions and
add others as you need them.

� As you might expect, expr produces a p expr and expr converts this into a p expr by supplying the
location information. The same for stmt and stmt. Remember that AST nodes for expr ’s contain
expr’s, and your rules for expr can refer to the nonterminal expr (same for statements). If, for some
reason, you need to define other nonterminals that produce p stmt ’s, you can add a nonterminal that
produces the corresponding p stmt by mimicking our definition of the stmt nonterminal.

� You should also add precedence and associativity annotations in iit parser.mly, right above the
%start annotation.

You can run Menhir on your parser by running make. Conflicts will be reported in parser.conflicts.
Your completed parser should have no shift/reduce or reduce/reduce conflicts.

3 Testing

Note that, because it’s a solution to another assignment, I did not include an IITRAN interpreter in the
handout code. But you should have one by now! Overwrite src/iit interp.ml with your solution from
Project 0 (or, if you’re not confident in the correctness of yours, you can use the posted solution code.) After
you do this, run make (in the top level directory of the repo, not in src) to compile your interpreter. This
produces a binary iit, just like in Project 0, which you can run on the command line like so:

./iit file.iit

where file.iit is an IITRAN source code file. This parses the source code, type-checks it and runs the
interpreter on it.

We’ve given you a number of test files in tests. Each program begins with a comment indicating the
expected result (recall that this is the value of variable RESULT), if the program is syntactically correct.
Files of the form tests/synerrN.iit should not parse and should result in a syntax error. You can run all
of the tests by running (on the command line, still in the top level of the repo) make test.

4

4 Task 2: Writing Test Cases

Task 2 (Test Cases, 5 points).

Each group should write (at least) one IITRAN program that is not substantially the same as the test
cases I’ve given you or others written by other students/groups (this is good incentive to write your tests
early and post them before other groups!) You’re encouraged to try and find corner cases and explore
code paths other tests might have missed. Don’t be too adversarial though; reasonable student solutions
should pass your test (e.g., please don’t try to cause a stack overflow in someone’s parser by submitting
a 500MB source file). Your test case can be designed to trigger a syntax error (but make it interesting,
don’t just submit a file of gibberish).

Post your test case as a new thread on the “Project 1 Test Cases” discussion board on Canvas. Make
sure to include the expected (integer) result somewhere, in a comment at the top of the test case and/or
in your post on the discussion board. You can (and should!) test your parser on other students’ test cases.
I may do so as well during grading. Feel free to ask clarification questions, note issues, etc., as replies in
the threads created by other students.

5

	MiniIITRAN Language Specification
	Syntax
	Semantics

	Task 1: MiniIITRAN Parser
	Testing
	Task 2: Writing Test Cases

