
IIT CS443: Compiler Construction

Project 2: MiniIITRAN to LLVM Compiler

Prof. Stefan Muller

Out: Tuesday, Sep. 17
Due: Thursday, Sep. 26, 11:59pm CDT

Total: 50 points

Logistics

Submission Instructions

Please read and follow these instructions carefully.

� Download the starter code by cloning the Github repo for the assignment. When you first go to the
link, you’ll be asked to create/join a team (if you’re working by yourself, just create a team with just
you). Github will create one repo per team.

� Note that the Github repo (and thus, by default, teams) will be the same for the remaining project.
Changes to teams will be possible in extenuating circumstances after this, but do think carefully about
your partner (or lack thereof) for this assignment.

� Submit your homework by pushing your changes to Github by the deadline (or the extended deadline
if taking late days). You can, of course, push non-finished code to your repo (e.g., while collaborating).
I’ll grade the last commit before the deadline. If you push to the repo one or two days after the
deadline, I’ll consider that a submission using late days and grade the last submission from the last
day.

� If you accidentally push to your repo after the deadline and didn’t intend to take late days, email me
ASAP. Otherwise, you do not need to let me know if you’re using late days; I’ll count them based on
the date of your last submission.

� Compile (by running make) before submitting. Submissions that don’t compile will not get
credit.

Collaboration and Academic Honesty

You may work in groups of at most 2 on this project. Read the policy on the website and be sure you
understand it.

1 MiniIITRAN Language Specification

Recall the language specification of MiniIITRAN from last time, reproduced below.

1

1.1 Syntax

digit ::= 0− 9
alpha ::= a− z,A− Z
alphanum ::= alpha | digit |

Identifiers id ::= alpha alphanum∗

Ident .Lists idlist ::= id | id , idlist
Numbers num ::= −? digit+
Types typ ::= INTEGER | CHARACTER | LOGICAL
Constants c ::= alpha | num
Binary Operators bop ::= + | − | ∗ | / | AND | OR |<|≤|>|≥| # |=
Unary Operators unop ::= ∼| NOT | CHAR | LG | INT
Expressions e ::= c | id | e bop e | e <− e | unop e
Statements s ::= e | STOP | DO s∗ END | IF e s | IF e s ELSE s |WHILE e s
Declaration d ::= typ idlist
Program p ::= d∗ s∗

Operator Precedence and Associativity.

Operator(s) Precedence Associativity
All unary operators 6 —
*, / 5 Left
+, - 4 Left
Comparison operators 3 Left
AND 2 Left
OR 1 Left
<− 0 Right

(Higher numbers indicate that operators have higher precedence, i.e., “bind tighter”). All operators are
left-associative except assignment. So, x <− y <− 2 + 5 should parse as x <− (y <− (2 + 5)).

Comments. Comments start with $ and go to the end of the line.

1.2 Semantics

Constants Numeric constants are specified as integers, possibly preceded by a − sign. Character constants
are specified as ’c’. There is no direct way to specify logical constants, but logical constants can be
introduced using LG n, which becomes logical true if n ≥ 0 and logical false if n < 0.

Variables Variables are declared with declarations, which declare one or more variables with a given type.
A variable may not be used without a declaration (this is a change from real IITRAN, but makes compilation
easier). Later declarations of variables take precedence over older declarations (the older declarations become
useless, as declarations must precede all statements.) Variable names are case-insensitive. Variables are
initialized to 0 (for logical variables, this means false, and for character variables, it means ASCII 0).

Binary Operations e1 bop e2
Operations are evaluated left-to-right (with short-circuiting as described below under “logical operators”):
e1 is evaluated before e2. This mostly matters when expressions contain assignments. For example, if B is
initially 0, then (B <- 1) + (B <- B + 1) should evaluate to 5.

Individual categories of binary operators are described below.

Arithmetic Operators (+, -, *, /) e1 bop e2
Types: e1 : INTEGER, e2 : INTEGER, result: INTEGER
Note: Integer overflows and division by zero result in runtime errors.

2

Comparison Operators (<,≤, >,≥,#,=) e1 bop e2
Types: e1 : INTEGER, e2 : INTEGER, result: LOGICAL
Note: # is “not equal to.”

Logical Operators (AND,OR) e1 bop e2
Types: e1 : LOGICAL, e2 : LOGICAL, result: LOGICAL
Important Note: Both AND and OR should short circuit, that is: if e1 evaluates to false, e2 should not be
evaluated at all in e1ANDe2 (and similar for e1ORe2 if e1 evaluates to true). In MiniIITRAN, this is mainly
relevant if e2 might divide by zero. For example, 1 > 0 OR 1 / 0 > 0 should never raise a divide-by-zero
exception.

Assignment x <− e
Types: x and e must have the same type. The result is of that same type.
Result: Compute e, assign its value to x and return the value.
Note: e1<−e2 where e1 is some expression other than a variable is a runtime error. For the purposes of this
class, it is unspecified whether or not such assignments are syntactically valid (so your parser may accept
them or not).

Integer Negation ∼ e
Types: e : INTEGER, result: INTEGER
Result: 0− e

Logical Negation NOT e
Types: e : LOGICAL, result: LOGICAL

Type Conversions INT, LG,CHAR.
The result type is as specified (INTEGER, LOGICAL, CHARACTER, respectively). The argument can have
any type.
LG n becomes logical true if n > 0 and logical false if n ≤ 0.
LG c, where c is a character is always logical true unless c is ASCII 0.
INT c returns the ASCII code of c.
INT l of a logical constant l returns 0 for false and 1 for true.
CHAR n returns the character with ASCII code n.
CHAR l returns the character with ASCII code 0 or 1.

Expression statements
Types: The expression must be well-typed with any type.
Result: The expression is computed. Any assignments are performed, but otherwise the value is ignored.

If statements IF e s1 ELSE s2
Types: e : LOGICAL.
Result: If e evaluates to true, performs s1, otherwise s2. If s2 is absent, control continues to the next
statement.

While statements WHILE e s
Types: e : LOGICAL.
Result: If e evaluates to true, performs s and then evaluates e again and loops. When e evaluates to false,
control continues to the next statement.

Stop Result: Ends execution of the program.

Do DO s1s2 . . . sn END
Types: All substatements must be well-typed. Result: Substatements are executed in order.

3

Program results. The program returns the value in the designated variable RESULT when execution
ends, either by control reaching the end of the programming or encountering a STOP. By convention,
RESULT should be declared to be an integer (programs should return integer values, and your compiler may
assume this is the case).

2 LLVM AST

The definition of LLVM ASTs is in llvm/llvm ast.ml. From your code, you can reference this module as
LLVM.Ast. The type var of variables is no longer just string but uses constructors to distinguish between
Local and Global variables. The only global variables will be function names, which we don’t even have in
this project, so you will only have to worry about local variables for now. Much later in the course, we’ll
need to swap out a different type for variables, so the types of values and instructions are parameterized
by the type ’var of variables. For this (and the next few) project(s), we will only instantiate it with var.
We’ll conflate IITRAN variables and LLVM locals, so you can turn an IITRAN variable s into L.Local s

(don’t worry about the % at the beginning of LLVM locals: the LLVM pretty-printer will add this). You
can assume (probably incorrectly) that the variable names generated by L.new temp (see below) are distinct
from any variables in the program1.

This file contains the full AST for the subset of LLVM we will eventually be using, but you don’t need
all of it for this assignment. As usual, the type of types is typ. The only type you’ll need for this project is
TInteger n (in). We’ve defined binary arithmetic operators bop and comparison operators cmp. A value is
either a constant (Const) integer or a variable (Var). The instructions you’ll need are ILabel, ISet, IBinop,
ICmp, IBr, ICondBr, and IRet. The return instruction IRet can return a value or not (not returning a value
corresponds to a C function returning void.) Since we have no functions in MiniIITRAN, IRet will only be
used to end the program and return the value of the variable RESULT.

Our LLVM definition also has functions, but you won’t need these for now. For this project, an LLVM
program is a list of insts.

3 Module Structure and Helpful Functions

The (only) file you’ll be editing is iitllvm.ml. The definitions of the MiniIITRAN language from Project
1 are in the folder iitran and are collected in the module IITRAN. So, for example, you can refer to the
IITRAN AST module as IITRAN.Ast. Same for the LLVM definitions in the folder llvm, which are collected
in the module LLVM. At the top of iitllvm.ml, I’ve opened IITRAN.AST, so you can refer to IITRAN AST
definitions without any module name, and rebound LLVM.Ast to L, so you can refer to, e.g., L.TInteger.
We can’t open both because they have some of the same names, so this is the next most convenient thing.

Speaking of convenience, there are a few other definitions in both folders you might want to know about.
You’ll probably use the functions new temp () and new label () a lot. Both take a unit (()) as argument
and return a new temporary LLVM variable and new label, respectively.

There’s an LLVM interpreter (LLVM.Interp), which you can call with your programs to test them out.
You can also run this from the command line on the LLVM programs output by your compiler (see the sec-
tion on Testing), but maybe you will want to call it from inside your compiler for debugging purposes
(please make sure to not do this in the code you hand in though!) The interface for the interpreter
code is in llvm/llvm interp.mli. There are also pretty-printers for both MiniIITRAN (IITRAN.Print)
and LLVM (LLVM.Print). The printing functions take a Format.formatter as their first argument. Use
Format.std formatter to print to standard output. The printing functionality for IITRAN is the same as
from Project 1. The interface for the LLVM pretty-printer is in llvm/llvm print.mli.

4 Task: MiniIITRAN Compiler

Your task is to implement the function compile stmt : IITRAN.Ast.t stmt -> LLVM.Ast.inst list

which compiles a MiniIITRAN statement to a list of LLVM instructions. You’ll almost certainly want to

1Just don’t use variable names starting with “temp” in your test cases!

4

define some (possibly mutually recursive) helper functions, like compile exp. My solution uses the following,
all mutually recursive (in addition to compile stmt):

� compile binop (dest: L.var) (b: bop) (e1: t exp) (e2: t exp) : L.inst list

� compile unop (dest: L.var) (u: unop) (e: t exp) : L.inst list

� compile branch exp (e: t exp) (tlabel: label) (flabel: label) : L.inst list

� compile exp (dest: L.var) (e: t exp) : L.inst list

but you’re free to do this differently if you want. Just don’t change the type signature of compile stmt,
because the top-level compile function, compile prog, uses that to compile the entire IITRAN program into
one big “main” function by just calling compile stmt on each statement in the body of the program.

Some (I hope) useful notes and/or hints:

� Don’t forget that the AND and OR operators should short-circuit, wherever they’re used in a program.
In class, we saw a few ways to do this. Pick one (or your own solution, as long as it works!)

� Because LLVM is typed, your generated code will need to have types. We’ll use the type i64 (bound
as itype for convenience) for integers and characters and i1 (btype) for logicals/Booleans. Usually,
the types will be clear based on the operations, e.g., arithmetic operations will produce and consume
integers. There are one or two cases where you’ll need to do something different based on the type of
expressions. Because type checking has already run, you’re using t exps, and so recall that you can get
the type of an expression e with e.einfo. We’ve provided the function compile typ, which compiles
MiniIITRAN types to LLVM types, for convenience.

� As with Project 0, you don’t need to worry about cases that would be type errors (e.g., if a character
is used as an operand to +), because the program has already passed type-checking.

� Your generated LLVM code does not need to be in SSA form; you’re free to assign to variables multiple
times. We run an algorithm to convert the code to SSA (if you’re interested, it’s in llvm/ssa.ml)
before outputting it.

5 Testing

Compile your code using make (in the top level of the source tree). This will produce the binary ./main,
which you can use as follows to compile test programs:

./main tests/<file>.iit

This will parse and compile the file, and then type-check the resulting LLVM code. By default, it will
output human-readable LLVM code in tests/<file>.ll. If you have the LLVM toolchain installed, you
can interpret or compile this file (the easiest thing would be to interpret it using lli tests/<file>.ll.
Note that the program doesn’t print anything, but just returns the value as the program’s exit code. In
Bash on Linux, you can print the exit code of the last command using echo $? (you can Google for how to
do it on other platforms if you don’t know.)

Even easier (especially if you don’t have LLVM) is to use the CS443 LLVM interpreter, which is already
built in to main. To do this, run

./main -interpllvm tests/<file>.iit

After type-checking the LLVM output by your compiler, this will run the interpreter on it and print the
result.

For this project, you aren’t required to write new test cases (since you already wrote IITRAN test cases
for the last project), though you are certainly encouraged to write new test cases to check extra cases in
your compiler (and are welcome to share them with the class if you do).

If you’re finding the output LLVM code hard to read, you can turn off the conversion to SSA using the
-nossa flag to ./main, so the output will be exactly what was produced by your compiler (wrapped in an
LLVM main function). Of course, this means you won’t be able to run LLVM tools on the output code, but
the built-in LLVM interpreter will still work if you also use -interpllvm.

5

	MiniIITRAN Language Specification
	Syntax
	Semantics

	LLVM AST
	Module Structure and Helpful Functions
	Task: MiniIITRAN Compiler
	Testing

