
IIT CS443: Compiler Construction

Project 4: MiniML to C Compiler

Prof. Stefan Muller

Out: Thursday, Oct. 16
Due: Thursday, Oct. 31, 11:59pm CDT

Total: 50 points (Programming: 45 points, Test case: 5 points)

Logistics

Submission Instructions

Please read and follow these instructions carefully.

� The starter code for Project 4 has been distributed through a pull request to your Project 2 GitHub
repo. Merge this pull request into your main branch to start working. (This shouldn’t cause merge
conflicts, but if it does and you aren’t sure how to handle them, ask.)

� Important new submission instructions! When you want to submit, commit the latest changes
to your GitHub repo with a commit message that clearly indicates this is your Project 4
submission (e.g., “Project 4 Submission” would be a good commit message). This is so I know which
commit to grade. If you resubmit later, just use a similar commit message. I’ll grade the last commit
that clearly indicates it’s a Project 4 submission (and count your late days based on the time stamp
of this submission).

� Compile (by running make) before submitting. Submissions that don’t compile will not get
credit.

Collaboration and Academic Honesty

You may work in groups of at most 2 on this project. Read the policy on the website and be sure you
understand it.

1 MiniML Language Specification

The MiniML abstract syntax is below, using red | characters between BNF productions to distinguish them
from | characters that actually appear in the MiniML syntax. MiniML is designed to be a subset of OCaml,
and the semantics are the same as for OCaml (so rather than give a full spec here, you can just look at
the OCaml docs). Please feel free to ask any clarification questions at all on Discord to make sure you
understand the spec before starting the compiler.

1

Types t ::= int | bool | unit | t list | t−>t | t ∗ t
Binary Operators bop ::= + | − | ∗ | / | AND | OR | < | ≤ | > | ≥ | <> | =
Unary Operators unop ::= ∼ − | not

Constants c ::= num | true | false | () | []
OptAnnot ot ::= ε | : t

Expressions e ::= x | c | e bop e | unop e | fun (x : t) −> e | if e then e else e | let x ot = e in e
| let f (x : t) ot = e in e | let rec f (x : t) : t = e in e | let (x, y) = e in e | e e
| match e with | [] −> e | h::t −> e | (e, e) | e::e | (e : t)

Declarations d ::= e | let x ot = e | let f (x : t) ot = e | let rec f (x : t) : t = e
Programs p ::= d; ; | d; ; p

Note some important differences with OCaml:

� While OCaml accepts both − and ∼ − for integer negation, we will allow only the latter to prevent
some syntactic ambiguity.

� Type annotations on function arguments are required. Return type annotations are optional, except
for recursive functions. Recursive functions must also have their return type annotated (though this is
actually enforced by type checking, not the parser).

� Lists, pairs, and functions are the only non-base types.

� Pattern matching is very limited: only the syntactic forms above are allowed.

� Tuples (both in pattern matches and when constructing them) must be enclosed in parentheses. I
consider this a feature rather than a limitation. Tuples of size > 2 are allowed; the parser desugars
them to nested pairs, so, e.g., (1, 2, 3) would desugar to (1, (2, 3)). Only pattern matching on pairs is
allowed, though, so you’d need to match against (1, 2, 3) with let (one, twothree) = (1, 2, 3)

in let (two, three) = twothree

� Functions take only one argument. You can make multi-argument functions using currying or using
tuples of arguments.

� MiniML is purely functional, so, e.g., the order you evaluate expressions doesn’t matter (did you know
OCaml evaluates function arguments right-to-left?)

� Each top-level declaration or expression in a program is required to be followed by a double semicolon
(; ;). OCaml allows this mostly for historical reasons.

None of the above contradicts OCaml, so all MiniML programs are valid OCaml programs and you can
test the desired behavior of your test cases by running them through OCaml.

2 Compilation Strategy

Below is an overview of how I suggest you build your compiler. The scaffolding code distributed with the
assignment assumes you’re doing it this way, so this’ll be less work. But, technically, it’s up to you.

Environments. I suggest keeping variable names as they are in the program for easier debugging, but
keeping around an “environment record” mapping variable names to their deBruijn indices. An environment
then is just a list of values (indeed, we will reuse the same struct for environments and lists). The current
environment is kept in a variable named env. The function lookup in env i t returns C code that looks up
the ith deBruijn index in the current environment and casts it to type t. This produces a call to the function
lookup, whose code is contained in the definition lookup in ml.c, and which will be automatically included

in the C file you generate. Functions extend env and extend with placeholder extend the environment
with a binding (and placeholder binding, respectively) and return the code to perform the environment
extension, paired with the new environment record. Both take the current environment record as their first
argument. Function pop env takes the current environment record and returns a pair of the code to pop the
first binding of the environment, and the new environment record.

2

Closures. We will represent closures using the following structure, whose declaration is automatically
added to C files you produce:

struct __clos{

__list clos_env;

(int(*)()) clos_fun();

};

The first field is the environment, and the second is the function pointer. The type of clos fun is that
of a pointer to a function that takes no arguments and returns int. The C AST for this type is bound for
you as fptr typ. The field names and signatures are bound in mlc.ml under the comment “Definitions for
compiling closures” so you don’t have to hardcode them. The function init struct is useful for producing
C code to initialize a new structure (and will be useful for closures, as well as lists and pairs). You can see
an example of it being used in the code for compile cons in mlc.ml.

Values and Types. Integers and Booleans are unboxed. Integers compile to int (as does the type unit;
we will just represent () with 0). Booleans compile to bool. Functions are represented as closures, described
above. Lists and pairs are boxed, and will be described below. The function compile typ compiles MiniML
types to MiniC types using the above strategy.

Lists. We will compile lists to linked lists in C, represented by the following structure, whose declaration
is automatically added to C files you produce:

struct __list {

int list_hd;

__list list_tl;

};

Note that int is used as a default type for the head element. You will need to cast elements (or pointers)
of other types in and out of int. (The variable def typ under “Convenience functions” is an alias for the
integer type, so you don’t have to keep hardcoding it.) Rather than using tags, we’ll just represent the empty
list [] as a null pointer (i.e. (list)0, recall the treatment of null pointers in MiniC).

The definitions compile nil and compile cons are provided for you under “Definitions for compiling
lists” in mlc.ml.

Pairs. We will compile pairs to this structure, whose declaration is automatically added to C files you
produce:

struct __pair {

int pair_fst;

int pair_snd;

};

The relevant field names are bound in mlc.ml under the comment “Definitions for compiling pairs.”

3 Module Structure and Helpful Functions

Many functions you may find helpful are described above. Here, we’ll go over the structure of the rest of
the code. The definition of MiniC ASTs is in c/c ast.ml, and the module is C.Ast. It’s bound to Ca

in mlc.ml (we can’t call it C since that would hide all of the other definitions in the C structure). The
definition of MiniML ASTs is in ml/ml ast.ml, and the module is ML.Ast. This module is opened in
mlc.ml. There are the usual ASTs for constants, types, binops, and unops, and one for expressions (the one
for expressions is, as usual, defined as a descriptor ’a exp which is combined with a location and a ’a to
make an ’a exp, and there are the usual functions for going back and forth). Unlike in the other languages

3

we’ve been compiling, there’s nothing higher-level than expressions (the syntax allows a file to have multiple
expressions/declarations but the parser desugars the whole program into one big expression).

There is also a type cfunction which is a record containing information about a C function, including
its body (already compiled to C).

The function
ML.Ast.new var : unit -> string

creates a new variable name. The function
ML.Ast.new mangle : string -> string

“mangles” an ML variable name by appending a unique number to the end.
Some other helpful functions for building types of syntax you’ll be using frequently are provided under

“Convenience functions”, along with the functions described above and many other functions you may
find helpful. I highly suggest you look through these functions before you start so you don’t wind up
reimplementing any of them (if you have questions about what any of these functions do, feel free to ask on
Discord). You can, of course, define your own functions along these lines if you find yourself using particular
patterns over and over.

As usual, there is a pretty-printer for MiniML in the module ML.Print, and the code is in ml/ml print.ml.
The main functions are:

string_of_typ : Ml_ast.typ -> string

pprint_expr : Format.formatter -> ML.Ast.t_exp -> unit

4 Programming Task: MiniML Compiler (45 points)

Your task is to implement the two mutually recursive functions

1. compile body: env record -> string -> var -> typ -> t exp -> Ca.p stmt list * Ca.p exp

* cfunction list. The return value of this function, as we discussed in class, is a list of C statements
that compute an expression, the final expression, and a list of nested closures. In this case, the expres-
sion you’re compiling is the body of a function. The env record argument is an environment record
(described in more detail above) which is an association list ((var * int) list) mapping variables to
their deBruijn indices. It’s your responsibility to keep env record in sync with the actual environment.

2. compile exp: env -> t exp -> Ca.p stmt list * Ca.p exp * closure typ list, which compiles
arbitrary expressions. The return value is the same as described above.

Some hints and additional information (ignore this at your peril!)

1. You are producing Ca.p stmts and Ca.p exps, so you don’t have to include type information in the C
code you produce; the MiniC type checker will do this. You do have to supply location information
for every C statement and expression. It’s valid to just use a “dummy” location for every AST node
(the functions mk exp and mk stmt will make a p exp and p stmt, respectively, from an expression or
statement description with a dummy location). However, it will make debugging easier if you copy over
(at least some of) the location information from the ML AST to the C code you produce (so you’ll be
producing C code that records the location in the original MiniML source file the corresponding code
came from). The function cloc of mlloc : ML.Ast.loc -> C.Ast.loc will help you here. That
way, if your compiled code raises a C type error, the error message will show what ML code you
compiled incorrectly.

2. Similar to above, recall that the EVar constructor in the MiniC AST takes both a var (just a string)
and a var scope, which is either Local or Global. The scope information is overwritten with the
correct scope by the C typechecker, so when you generate an EVar, you can just make all the variables
Local.

3. As we discussed in class, the order functions appear in the C file is important. The function compile prog,
which calls compile exp and assembles the whole C file, adds functions to the C file in the reverse
order in which they appear in the list of closures that is returned by compile exp. Keep this in mind

4

when building up lists of closures. Is this brittle as hell? Yes. Would it work if we added mutually
recursive functions to MiniML? No. But MiniC doesn’t allow function declarations without a function
body, so this is the best we can do.

5 Test Cases (5 points)

Each group should write (at least) one MiniML program that is not substantially the same as the test cases
I’ve given you or others written by other students/groups (this is good incentive to write your tests early
and post them before other groups!) You’re encouraged to try and find corner cases and explore code paths
other tests might have missed. Don’t be too adversarial though; reasonable student solutions should pass
your test.

Some other rules (the test cases I use for grading will follow these rules as well):

� Your test case should be syntactically valid according to the MiniML syntax in this document.

� Your test case should also be type-correct. That is, it should not raise a type error.

� The intended behavior of the test case may be to raise a runtime error.

Post your test case as a new thread on the “Project 4 Test Cases” discussion board on Blackboard. You
can (and should!) test your compiler on other students’ test cases. I may do so as well during grading. Feel
free to ask clarification questions, note issues, etc., as replies in the threads created by other students.

6 Testing

Compile your code using make (in the top level of the source tree). This will produce the binary main, which
you can use as follows to compile test programs:

./main -keepc -stopc tests/<file>.ml

This will parse and compile the file, and then type-check the resulting MiniC code. By default, it will
output human-readable MiniC code in tests/<file>.c. Unfortunately, MiniC is not quite compatible with
actual C, so you won’t be able to test the output by compiling it using a C compiler. Instead, you’ll need a
MiniC compiler. Luckily, you should have one of those lying around from last week. If you replace cllvm.ml

with your cllvm.ml from Project 3 (or the Project 3 solutions if you prefer) and compile, you can run:
./main -keepc -interpllvm tests/<file>.ml

This will compile and output the generated MiniC as above, but will also compile the generated MiniC
to LLVM, output human-readable LLVM and run it through the LLVM interpreter, as in the Projects 2 and
3 testing.

If you’re getting an Unimplemented exception (and you’ve completed all parts of Project 4), you may
not have replaced cllvm.ml with your MiniC-to-LLVM compiler.

Running make test will run all of the tests listed in the p4tests file. If you add another test case, it
won’t automatically be run by make test unless you add it to p4tests following the existing examples.
Note: This test script is at best barely production-ready. Feel free to modify it how you want (let me
know if you make useful modifications I can push out in future assignments!). It may not be a substitute for
running tests individually, as described above (in particular, if you get an error like “Expected: 42, Got:”,
this probably means that the test raised an exception; you should re-run that test manually to debug it.)

5

	MiniML Language Specification
	Compilation Strategy
	Module Structure and Helpful Functions
	Programming Task: MiniML Compiler (45 points)
	Test Cases (5 points)
	Testing

