[I'T C5443: Compiler Construction

Project 5: Dataflow Analysis and Optimization

Prof. Stefan Muller

Out: Thursday, Oct. 31
Due: Tuesday, Nov. 12, 11:59pm CDT

Total: 45 points (Programming: 35 points, Test cases: 10 points)

Logistics

Submission Instructions

Please read and follow these instructions carefully.

e The starter code for Project 5 has been distributed through a pull request to your Project 2 GitHub
repo. Merge this pull request into your main branch to start working. (This shouldn’t cause merge
conflicts, but if it does and you aren’t sure how to handle them, ask.)

e When you want to submit, commit the latest changes to your GitHub repo with a commit message
that clearly indicates this is your Project 5 submission (e.g., “Project 5 Submission” would be
a good commit message). This is so I know which commit to grade. If you resubmit later, just use a
similar commit message. I'll grade the last commit that clearly indicates it’s a Project 5 submission
(and count your late days based on the time stamp of this submission).

e Compile (by running make) before submitting. Submissions that don’t compile will not get
credit.

Collaboration and Academic Honesty

You may work in groups of at most 2 on this project. Read the policy on the website and be sure you
understand it.

A Quick Note on Grading

Grading for the programming tasks in this project will be primarily based on safety, i.e., whether your
optimizations preserve the original behavior of the program. You can still get full credit even if your
implementation misses some opportunities for optimization, as long as it is a reasonably complete attempt
at the intended optimization (e.g., if you leave the compiler as is so that it does not alter the behavior but
also does not optimize the program, you will not get credit :-).)

1 Programming Tasks: Optimizations

You will complete the programming tasks of the project in opt.ml. You will need to add your own functions
in this file to perform various optimizations, and also edit one or both of the following functions:

opt_body : typ LLVM.Typecheck.LLVarmap.t -> string -> inst list -> inst list

and

opt: typ LLVM.Typecheck.LLVarmap.t -> prog —> prog

Currently, opt_body just returns the body of a function unchanged, and opt calls opt_body on the
body of each function, rebuilding the (currently unchanged) program from the function bodies returned
by opt_-body. You'll be changing these functions to actually optimize the program! (Note: All of the
optimizations mentioned in this project operate only on function bodies, and therefore only require editing
opt_body; youll only (maybe) need to edit opt if you add your own other optimizations.)

The arguments to opt_body are as follows:

e ts: LLVM type information. This is useful for calling some of the convenience functions I provide.
e fname: The name of the function being optimized.
e body: The body of the function as a list of LLVM instructions.

You can assume that the LLVM code passed to your functions is in SSA format.

1.1 Task 1: Common Subexpression Elimination (20 points)

Your first task is to implement common subexpression elimination (CSE). Recall that CSE
requires performing a dataflow analysis to determine the available expressions at every point in the program.
Lucky for you, I've given you code that performs a generic iterative dataflow analysis. You just have to
instantiate it with the right gen and kill functions for available expressions.

Some notes on how to use the dataflow analysis framework:

e The dataflow analysis is implemented in the module ExpDataf lowﬂ The main function in this module
is ExpDataflow.compute. It takes the following arguments:
— cfg : DFG.t: A dataflow graph. See below for how to compute this.

— gen: inst -> ExpSet.t : The definition of gen, as a function that returns a set of expressions
genned by the given expression.

— kill: inst -> ExpSet.t -> ExpSet.t : The definition of kill, as a function that takes an
instruction and a set of expressions and returns the set of expressions remaining after killing
expressions killed by the given expression.

— fwd: bool. If this is a forward (as opposed to backward) dataflow analysis.

— must: bool. If this is a “must” (as opposed to “may”) analysis.
and returns a pair (in, out), where both components are of type ExpSet.t NodeMap.t.

e ExpSet.t is a set of LLVM instructions. It is an instantiation of OCaml’s Set module. See https:
//v2.ocaml.org/api/Set.S.html|for the API of this module (where elt is instantiated here to inst.)

e NodeMap.t is a map from DFG nodes to ExpSet.ts. It is an instantiation of OCaml’s Map module. See
https://v2.ocaml.org/api/Map.S.html for the API of this module (where key is instantiated here
to DFG.G.node, the type of CFG nodes.)

e The module DFG has all of the facilities for working with dataflow graphs. The function you’ll need is
DFG.cfg of insts : string -> inst list -> (DFG.t * DFG.G.node) * DFG.node list

which builds a dataflow graph from a function name and body. It returns a nested pair ((Dataflow
graph, entry node), list of all nodes). The nodes of the dataflow graph correspond one-to-one to the
provided LLVM instructions, and the list of all nodes (the last component of the returned pair) gives
the nodes in the same order as the list of LLVM instructions passed to cfg_of_insts. This is useful

Hf you’re curious and not scared off by OCaml functor syntax, this instantiates the functor in dataflow.ml by setting the
sets of “facts” to lists of LLVM instructions. You’re welcome to reuse this functor in other ways for other optimizations in Task
2 if you want, but you don’t have to.

https://v2.ocaml.org/api/Set.S.html
https://v2.ocaml.org/api/Set.S.html
https://v2.ocaml.org/api/Map.S.html

since, after doing dataflow analysis, you can pair the body together with this list to do something for
each instruction in the function. For example, if you call cfg_of_insts on body and nodes is the list
of all nodes you get back, you can use

List.map2 (fun inst node ->
let available_in = ExpDataflow.NodeMap.find node in_fs
in ...)
body
nodes

where in_fs is returned by ExpDataflow.compute, to map over the body of the function and do
something (the ... above) with the “in” set for each instruction.

You may find the def_inst and use_inst functions in 11vm/1lvm utils.ml useful.

There are a bunch of functions and definitions at the top of opt.ml. Some of these are used in
my solution. Look through these and see if any of them might be useful before you start coding.

When you're done, don’t forget to modify opt_body to call your code so it actually performs CSE on the
program!

1.2

Task 2: Choose your own adventure (15 points)

Implement one of the following optimizations:

Copy /constant propagation (you should propagate both constants and copies)

Constant folding (you should perform arithmetic and logical operations, comparisons and constant

jumps)

Dead code elimination

If you want to implement a different optimization of similar complexity instead, contact
me for approval first. You're welcome to implement additional optimizations if you wish, as long as you
implement one of the above (or a different one with permission) and your additional optimizations don’t
interfere with its correctness. When you're done, don’t forget to modify opt_body and/or opt to call your
code so it actually performs the optimization on the program!

Some hints/additional information (ignore these at your peril!)

There are a bunch of functions and definitions at the top of opt.ml. Each of these is used in my
solution for one or more of the optimizations above (or for CSE). Look through these and see
if any of them might be useful before you start coding.

You may also find the def_inst and use_inst functions in 11vm/1lvm utils.ml useful.

Pay careful attention to the lecture notes on your chosen optimization, particularly the implementation
details and caveats about safety.

You may find you want maps from LLVM variables to other things. The VMap module is provided for
this. Like NodeMap, it uses the OCaml Map API (see link in the previous task). You can use this to
make your own maps, e.g. a int VMap.t maps LLVM variables to integers, and a value VMap.t maps
LLVM variables to values.

If you're putting an LLVM function (type func) together (not just returning a body as a list of
instructions), make sure to call make_func (defined in 11vm/11lvm_ast.ml) rather than building a func
record directly. This does some preprocessing on the function to maintain some invariants.

e The function signatures of functions you add to perform optimizations is up to you, but you may find
it helpful to make your optimization functions have type

typ LLVM.Typecheck.LLVarmap.t -> string -> inst list -> inst list

(which is bound in the code as func_optimizer) for reasons discussed below. This matches the type
of opt_body.

e If you're doing copy propagation or dead code elimination (or some combination of these and constant
folding), you may want to call the optimization(s) in a loop since doing it once can enable more
optimizations. I've provided the function iterate which takes an int option, a list of optimization
functions of type func_optimizer (see the previous bullet point), and the same arguments ts, fname,
and body, that are taken by opt_body (and by your optimizers if you chose to follow the advice in
the previous point). The function applies the provided optimizations in a loop (in the order they’re
provided in the list, then repeating) until either the code stops getting shorter (if cond is None) or for
n iterations (if cond is Some n).

2 Task 3: Two(!) test cases (10 points)

Each group should pick one of the optimizations they implemented (CSE or their chosen optimization in
Task 2) and write at least two test cases:

e At least one test case that allows the optimization to occur.

e At least one test case that tests a corner case related to safety. This could be a test case in which the
optimization should not be applied, or one where it must be applied carefully. (The exact meaning of
this will depend on which optimization is targeted.)

e As in previous assignments, the test cases shouldn’t be substantially the same as test cases provided
by the instructor or other groups, and should be reasonable (but can be adversarial within reason).

Upload your test cases on the “Project 5 Test Cases” discussion board on Canvas. You can (and should!)
test your compiler on other students’ test cases if relevant to the optimizations you implemented. I may do
so as well during grading. Feel free to ask clarification questions, note issues, etc., as replies in the threads
created by other students.

Your test cases may be LLVM IR or MiniC, but must be accepted by the appropriate parser and type
checker in main.

Note: There are, at least initially, no instructor-supplied test cases. As such, the proj5_tests folder
and pbtests file are empty, and running make test won’t do anything useful unless you write your own
tests and add them to p5tests. Depending on how the test cases discussion is going, I may chime in with
my own at some point. You can always test with the Project 2, 3, and 4 test cases if you enable the compiler
to use MinilITRAN, MiniC, and MiniML source code as inputs (see next section).

3 Testing

Compile your code using make (in the top level of the source tree). This will produce the binary main, which
you can use as follows to compile test programs:

./main -interpllvm <path_to_test_case>

Assuming you've left your MinilITRAN, MiniC, and MiniML compilers in the respective files, your
compiler will also be able to take MinilITRAN, MiniC, and MiniML source files as input. In any case, this
will parse and type check the file, compile it to LLVM IR (if it isn’t already), and run opt on the LLVM
code. By default, it will output human-readable LLVM IR to <same_path_as_input>/<file>.1l.

Important: if using an LLVM IR test case, you should use the —o <output_file> flag to write the
output to a different file.

Other command line options that might be helpful:

e —cost: If you use this along with -interpllvm, the interpreter will track the execution “time” of the
LLVM code (in arbitrary units, assigning fixed costs to each opcode). You can use this to see what
effect your optimizations are having.

e -00 (that’s an uppercase letter O and a digit zero): Turns off optimizations (you can also use -01 to
turn on the optimizations, but this is the default).

Note: You should not use the -nossa command line option, as your optimizations likely require SSA
format for safety.

	Programming Tasks: Optimizations
	Task 1: Common Subexpression Elimination (20 points)
	Task 2: Choose your own adventure (15 points)

	Task 3: Two(!) test cases (10 points)
	Testing

