[I'T C5443: Compiler Construction

Project 6: Register Allocation and Instruction Selection

Prof. Stefan Muller

Out: Tuesday, Nov. 12
Due: Wedneday, Nov. 27, 11:59pm CDT

Total: 55 points

Logistics

Submission Instructions

Please read and follow these instructions carefully.

e The starter code for Project 6 has been distributed through a pull request to your Project 2 GitHub
repo. Merge this pull request into your main branch to start working. (This shouldn’t cause merge
conflicts, but if it does and you aren’t sure how to handle them, ask.)

e When you want to submit, commit the latest changes to your GitHub repo. (A helpful commit message
is always, well, helpful, but I’ll assume the last commit to your repo is your intended project 6 grade
unless you tell me otherwise, since there are no more projects for you to work on.)

e Compile (by running make) before submitting. Submissions that don’t compile will not get
credit.

¢ A note on late days: You can submit by Friday, Nov. 29 using one late day (not a typo; this
is skipping over Thanksgiving Day), or by Saturday Nov. 30 using two late days. Because of the
timing of the final exam, barring truly exceptional circumstances, I cannot accept any submissions
after 11:59pm Saturday Nov. 30.

Collaboration and Academic Honesty

You may work in groups of at most 2 on this project. Read the policy on the website and be sure you
understand it.

1 Module Structure and Helpful Functions

The (not very abstract) abstract syntax for RISC-V instructions is in riscv/riscv_ast.ml. The main type
is ’a inst. The ’a type parameter is the type of labels: for your code generation, we will only be working
with label inst, where label is an alias for string. That is, as in class (and as in LLVM), you’ll be able
to jump and branch to string labels which you can place directly in the code (the Label “instruction”).
Otherwise, instructions are grouped by their type (the ones you’ll primarily be working with are R, I, and
B). This means that the actual opcode is one of the parameters, not the constructor. For example, you’d
encode add rd, rsl, rs2 asR (Add, rd, rsi, rs2). Note:

e 1w is considered an I-type instruction, with 1w rd, im(rs) encoded as I (Lw, rd, rs, im).



e jal, sw, and lui are treated separately as indicated in the comments.
e You should not need to use StoreLabel, LoadLabel, or LoadAddress in your code.

Registers are also defined as constructors of type reg. The constructors are named X0, X1, etc. There
are also aliases for registers used in various conventions, e.g., zero, ra (return address), sp (stack pointer),
fp (frame pointer), and retval (a0, return value). There are also pre-defined lists of registers that are
callee_saved and caller_saved. The list general_purpose contains all of the registers you should consider
available for register allocation. Finally, args contains the registers (in order) that are used for function
arguments. You can access the RISC-V AST using Riscv.Ast (or R in codegen.ml).

The file riscv_print.ml (Riscv.Print) contains functions for converting various AST components to
strings, and for printing instructions. These work much the same way as pretty-printing functions on past
assignments. Note that I've included two versions of string of _reg. The default one prints the ABI names,
but you can comment that one out and uncomment the other, which prints the numbers.

The file codegen.ml already defines a module VRMap, which meets the same interface as the maps we
know and love, but its keys are of type var_or_reg (remember from lecture, this is now the type of variables,
which allows us to mix LLVM code that uses variables with code that uses explicit registers).

All of the infrastructure from past projects is still here as well (as well as your solutions to them, unless
you replace them with my solutions). In particular, remember the following definitions, which you might
find useful:

o LLVM.Ast.sizeof: LLVM.Ast.typedefs -> LLVM.Ast.typ -> int

e Config.word_size: int

2 Programming Task 1: Instruction Selection (25 points)

Your first task is to complete the translation from LLVM (after register allocation) to RISC-V. I've already
implemented a few cases; you need to do the rest, namely:

e ILabel
o ISet

e IBinop
e IBr

e ICondBr
e TAlloca
e Tload

e IStore

(Note that these don’t necessarily directly correspond to match cases you need to implement, as some of
these are multiple cases and some can be combined).

This all happens in codegen_body in codegen.ml. As you can see, there are already a few helper functions
here:

e get_regr: Dbool -> var_or_reg -> R.label R.inst list * R.reg. This takes a var_or_reg and
sets you up to use it as an operand. The first component of the result is a list of RISC-V instructions
to move the variable into a register (if it isn’t in one already), and the second component is the register
that the variable will be in once you run those RISC-V instructions. If the variable is already in a
register, the list of instructions will be empty and the register will be that register. This is obviously
also true if the var_or_reg is just a Register. If it has to move the variable into a register, it will use
x5 if the first argument is true, otherwise x6.



e get reg rval: bool -> avalue -> R.label R.inst list * R.reg. Similar to get_reg r, but
takes a value (a variable or integer constant). This also handles loading constants into a register,
including using 1lui if the constant takes more than 12 bits. Note that this is wasteful if you could use
an instruction like addi, as get_reg _r_val will always move the constant into a register.

e get regw: var_or.reg -> R.label R.inst list * R.reg. Gives you the register to use for the
destination of an instruction. If the var_or_reg is a variable stored in a register, it will return that
register. If it’s spilled, it will return the temporary register x7 and a list of RISC-V instructions that
will store x7 to the correct location on the stack to update the variable. NOTE that these instructions
should be run after performing whatever operation you're doing.

e rop_of _binop: bop -> R.rop. Returns the RISC-V opcode for the R-type instruction corresponding
to an LLVM binop.

e iop_of binop: bop -> R.iop. Returns the RISC-V opcode for the I-type instruction corresponding
to an LLVM binop.

The main part of the function matches against the first few LLVM instructions. It should return something
of type R.1label R.inst list * ainst list. That is, a list of RISC-V instructions corresponding to the
matched instructions, paired with the rest of the instructions. For example, if insts is
(IBinop(Register R.X7, BAdd, ty, Var (Register R.X5), Var (Register R.X6)))::t
you’d return
([R.R (R.Add, R.X7, R.X5, R.X6)], t)
i.e., a RISC-V instruction corresponding to the first LLVM instruction and the remaining LLVM instructions.
If you want to emit a RISC-V instruction corresponding to the first two LLVM instructions (depending on
what they are), you’d match insts with
<pattern to match inst 1>::<pattern to match inst 2>::t and then return
([<RISC-V instruction(s) for instl and inst2>], t)

You also have access to the following arguments to codegen_body, which may be useful:

e ctx: typdefs— Typing information about the LLVM code. This can be passed to LLVM. Ast.sizeof.
e alloc: alloc_res VRMap.t — The result of register allocation.

Finally, your code can/should make the following assumptions (my code does; your code shouldn’t have
to interact with these assumptions much if at all, but just so you're aware):

e All integer types in the LLVM code you're given are 32 bits or smaller (i.e., you may see il or i8 or
i32 or even i5 but not i64). And, as has been true so far, pointers are 32 bits.

e Integer types iN for NV < 32 are stored in the lower N bits of a 32-bit memory word or register and
sign-extended. For example, -1 as an 18 would still be stored as Oxffffffff. Don’t try to be cute
packing multiple i8s together in a single word.

3 Testing Instruction Selection: This is different from past projects!

You can test instruction selection even before implementing register allocation, because I've provided you
with a simple (almost-) linear scan register allocator that should work fine for simple test cases (it should
be correct for any test case, but may spill more than necessary).

Compile your code using make (in the top level of the source tree). This will produce the binary main,
which you can use as follows to compile test programs:

./main -00 <path_to_test_case>

The test case can be a MiniLLVM, MinilITRAN, MiniC, or MiniML source file (if it’s something other
than MiniLLVM, it will be using your solution(s) for the respective projects to comple to LLVM). If you
want to optimize also, remove the -00 flag and it’ll run your project 5 optimizer. In any case, this will parse
and type check the file, compile it to LLVM IR (if it isn’t already), allocate registers using the provided
implementation, and then run instruction selection.



This will output RISC-V assembly code to <same_path_as_input>/<file>.s. You can run this using
the Venus RISC-V simulator at https://venus.cs6lc.org/, as demonstrated in class (or other RISC-V
simulators/emulators at your own... uh... risk). Remember that the return value of the main function
becomes the exit code of the whole program—Venus reports this with a banner saying “Program exited with
error code N.” This isn’t actually an error (as long as N is the return value you were expecting).

VERY Important note: The test script run by make test does not run your generated RISC-V code
through an emulator (because I haven’t provided you with one that can be run programmatically), and is
therefore totally useless for testing this project. The only way to test your code is using the instructions
above. It’s just as well though. Venus has way better debugging support than anything I would have coded
up, and you can use this to find errors in your code generator.

I did, however give you a few test cases in the proj6_tests folder that you can use with the instructions
above. The expected results are stored in proj6_tests/results.txt (because my LLVM parser doesn’t
allow comments).

4 Programming Task 2: Register Allocation (30 points)

Your second task is to fill in the implementation of grcolor in codegen.ml with a graph-coloring register
allocator, as we discussed in class. The function returns a pair (list of spilled vertices, allocation), where the
second component is of type alloc_res VRMap.t: it maps registers to themselves, and variables to either
InReg of a register or OnStack of a stack position. The parts that are already implemented perform a
liveness analysis and build an interference graph igraph from it. I also gave you the part that initializes the
allocation map to pre-color the registers with themselves. The interference graph is of type IG.t, and IG
meets the GRAPH signature in utils/graph.ml. The main interesting feature of this interface is that nodes
in the graph contain data. The data of a node in the interference graph is of type var_or_reg: remember
that the nodes of an interference graph represent variables (which in our LLVM AST can now be actual
variables or registers). To get the var_or_reg that a node represents, use IG.get_data. Also note that the
GRAPH interface is designed for directed graphs; since interference graphs are undirected, all nodes that have
an edge between them have one in both directions. Practically what this means is that, to get the neighbors
of a node, you can call either IG.succs or IG.preds and get the same answer.

You can see how some of this works in action by looking at the code for greedy, which is the provided
greedy register allocator.

While you have a lot of flexibility in your implementation, the following slight variant on the algorithm
we discussed in class is pretty easy to implement functionally given the way things are set up (note that
below, “the stack” refers to the stack of graph nodes we build up during simplification; how you implement
it is up to you):

1. Tterate over the nodes of the interference graph, removing from the graph and pushing on the stack
any node with degree less than K (remember not to remove nodes that are Registers)

2. Repeat step 1 until it doesn’t remove any more nodes.

Spill a node, remove it from the graph and push it on the stack.

- W

Repeat steps 1-3 until the graph contains only Registers.

5. In the order that they appear on the stack (the reverse of the order they were pushed), pick a color
for the nodes. You can use the function
get_reg: IG.t -> alloc_res VRMap.t -> IG.node -> R.reg option
which takes the interference graph, the allocations so far, and a node, and returns a register that is
available to use for the node, if one exists.

Note in particular that you do not have to implement coalescing.
When done, change the definition of regalloc_strategy in codegen.ml from greedy to grcolor
in order to use your allocator.


https://venus.cs61c.org/

5 Testing Register Allocation

First, make sure you’ve changed regalloc_strategy to use your allocator (see above) before testing, other-
wise you're just testing my greedy allocator!

Compile and run your code as in the “Testing Instruction Selection” section. Run the compiled code in a
simulator to make sure your allocator is working correctly. To make sure it’s also doing something sensible,
you’ll need to check the actual allocation decisions it’s making. If you don’t want to inspect the compiled
assembly manually, you can use the ~dumpalloc command line flag to ./main, which will print out a table
with the allocation decisions after running register allocation.

6 The End

I recommend running ./main on one of the MiniML test cases from Project 4, and running the generated
assembly through the Venus simulator. This is a good stress test for your compiler, but also involves the
entire compiler pipeline from Projects 2-6. Depending on which test case you run, it may take a while—the
simulator is kinda slow and I’'m not gonna say we built the most efficient compiler. But as the program runs,
you’ll have some time to take a minute and reflect on what you’'ve accomplished this semester: you built a
working compiler from (OK, a pretty small subset of) OCaml to assembly. Not bad.

If you find yourself reflecting for too long, you may have introduced an infinite loop into the code. But
hopefully (maybe after some debugging) you’ll see it spit out the right answer.

See you at the final!



	Module Structure and Helpful Functions
	Programming Task 1: Instruction Selection (25 points)
	Testing Instruction Selection: This is different from past projects!
	Programming Task 2: Register Allocation (30 points)
	Testing Register Allocation
	The End

