
Illinois Institute of Technology Practice 3

 Types, Expressions, and States
CS 536: Science of Programming, Fall 2021

1. Which of the following expressions are legal or illegal according to the syntax we’re us-

ing? Assume x, y, z are integer variables and b is an array name.

a. (if x > y then x else y)

b. (if x < y then -1 else (if x = y then 0 else 1))

c. (if y = 0 then f else g)(17)

d. b[0][1] /* What type must b have for this to be legal? */

e. b /* Remember we're given that b is an array */

2. Which of the following are legal ways to write out a state? (And if not, why not?)

a. {x = 5, y = 2}

b. {x = five, y = one plus one}

c. {x = 5, y = x minus 3}

d. {x = 5, y = α - 3} where α = 5

e. {x = 5, y = (the value of x in this environment minus 3)}

f. { }

3. Let e₄ ≡ x = y+1 ∧ y = z² - 3 ∧ z = 6. Write out the textual definition of a state σ₄ in

which e₄ evaluates to true. Use only bindings that map variables to constants. σ₄ = { x

= 34, y = 33, z = 6 }

5. Which of the following states are well-formed and also proper for the expression b[i] + 0

* y? If ill-formed, why? If taking the value might cause a runtime error, why?

a. {i = 0, b = (3, 4, 8), y = 3, z = 5)

b. {i = 0, b = (6), y = 5)

c. {i = 0, b = 6, y = 5)

d. {i = 1, b = (3, 4, 8))

e. {i = 1, i = 2, y = 0, b = (2, 6))}

f. {i = 5, b = (1, 2), y = 4}

CS 536: Science of Programming – 1 – © James Sasaki, 2021

Illinois Institute of Technology Practice 3

CS 536 Solution to Practice 3 (Types, Expressions, and States)

1. (Legal and illegal expressions)

a. legal

b. legal

c. illegal because the conditional expression can’t yield a function/operator

d. b[0][1] is legal (b must be a 2-dimensional array)

e. b (all by itself) is illegal, since b we've assumed is an array

2. (Legal ways to represent states)

a. {x = 5, y = 2} is legal

b. {x = five, y = one plus one} is legal because “five” and “one” etc. refer to semantic

objects.

c. {x = 5, y = x minus 3} is illegal: To be legal, “x minus 3” has to be a value, so “x”

has to be a value (it has to be the name of a mathematical object like 5). But the

binding x = 5 tells us “x” is a variable that can appear in an expression, so “x” is a

syntactic object. It can’t be syntactic and semantic at the same time.

Also, in this nicely word-processed document, “x” is presented in this font, so

we know it’s supposed to be a syntactic object. On paper, you see the difference be-

tween “x” and “x”. Even so, if someone wrote { x = 5 , y = x minus 1 } on

the blackboard, it would have to be illegal because of using x in two incompatible

ways.

d. {x = 5, y = α - 3} where α = 5 — is legal. We infer that symbols x and y are syntac-

tic objects and α is the name of the semantic object 5.

e. {x = 5, y = (the value of x in this environment, minus 3)} is legal. Since “the value

of x in this environment” is just another name (albeit complicated) for the mathemat-

ical object 5, it’s legal to use here.

f. { } is legal, since it’s just another way to write ∅, the empty state.

3. σ₄ = {z = 6, y = 33, x = 34}

4. (Proper states)

a. (Well-formed and) Proper: The extra binding for z isn't a problem

b. (Well-formed and) Proper: The value of b is an array of length 1.

c. (Well-formed but) Improper: The value of b can't be an integer.

CS 536: Science of Programming – 2 – © James Sasaki, 2021

Illinois Institute of Technology Practice 3

d. (Well-formed but) Improper: We need a binding for y even though we're multiplying it

by zero. [So our semantics uses eager evaluation, not lazy evaluation.]

e. Ill-formed: We have two bindings for i.

f. (Well-formed and) Proper but causes a runtime error, since b has size 2.

CS 536: Science of Programming – 3 – © James Sasaki, 2021

	Types, Expressions, and States
	CS 536: Science of Programming, Fall 2021
	
	CS 536 Solution to Practice 3 (Types, Expressions, and States)

